16 research outputs found

    Turbulence has its limits : a priori estimates of transport properties in turbulent fluid flows

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Optimizing the Source Distribution in Fluid Mixing

    Get PDF
    A passive scalar is advected by a velocity field, with a nonuniform spatial source that maintains concentration inhomogeneities. For example, the scalar could be temperature with a source consisting of hot and cold spots, such that the mean temperature is constant. Which source distributions are best mixed by this velocity field? This question has a straightforward yet rich answer that is relevant to real mixing problems. We use a multiscale measure of steady-state enhancement to mixing and optimize it by a variational approach. We then solve the resulting Euler--Lagrange equation for a perturbed uniform flow and for simple cellular flows. The optimal source distributions have many broad features that are as expected: they avoid stagnation points, favor regions of fast flow, and their contours are aligned such that the flow blows hot spots onto cold and vice versa. However, the detailed structure varies widely with diffusivity and other problem parameters. Though these are model problems, the optimization procedure is simple enough to be adapted to more complex situations.Comment: 19 pages, 23 figures. RevTeX4 with psfrag macro

    Stirring up trouble: Multi-scale mixing measures for steady scalar sources

    Full text link
    The mixing efficiency of a flow advecting a passive scalar sustained by steady sources and sinks is naturally defined in terms of the suppression of bulk scalar variance in the presence of stirring, relative to the variance in the absence of stirring. These variances can be weighted at various spatial scales, leading to a family of multi-scale mixing measures and efficiencies. We derive a priori estimates on these efficiencies from the advection--diffusion partial differential equation, focusing on a broad class of statistically homogeneous and isotropic incompressible flows. The analysis produces bounds on the mixing efficiencies in terms of the Peclet number, a measure the strength of the stirring relative to molecular diffusion. We show by example that the estimates are sharp for particular source, sink and flow combinations. In general the high-Peclet number behavior of the bounds (scaling exponents as well as prefactors) depends on the structure and smoothness properties of, and length scales in, the scalar source and sink distribution. The fundamental model of the stirring of a monochromatic source/sink combination by the random sine flow is investigated in detail via direct numerical simulation and analysis. The large-scale mixing efficiency follows the upper bound scaling (within a logarithm) at high Peclet number but the intermediate and small-scale efficiencies are qualitatively less than optimal. The Peclet number scaling exponents of the efficiencies observed in the simulations are deduced theoretically from the asymptotic solution of an internal layer problem arising in a quasi-static model.Comment: 37 pages, 7 figures. Latex with RevTeX4. Corrigendum to published version added as appendix

    Wall roughness induces asymptotic ultimate turbulence

    Get PDF
    Turbulence is omnipresent in Nature and technology, governing the transport of heat, mass, and momentum on multiple scales. For real-world applications of wall-bounded turbulence, the underlying surfaces are virtually always rough; yet characterizing and understanding the effects of wall roughness for turbulence remains a challenge, especially for rotating and thermally driven turbulence. By combining extensive experiments and numerical simulations, here, taking as example the paradigmatic Taylor-Couette system (the closed flow between two independently rotating coaxial cylinders), we show how wall roughness greatly enhances the overall transport properties and the corresponding scaling exponents. If only one of the walls is rough, we reveal that the bulk velocity is slaved to the rough side, due to the much stronger coupling to that wall by the detaching flow structures. If both walls are rough, the viscosity dependence is thoroughly eliminated in the boundary layers and we thus achieve asymptotic ultimate turbulence, i.e. the upper limit of transport, whose existence had been predicted by Robert Kraichnan in 1962 (Phys. Fluids {\bf 5}, 1374 (1962)) and in which the scalings laws can be extrapolated to arbitrarily large Reynolds numbers

    Large scale dynamics in turbulent Rayleigh-Benard convection

    Get PDF
    The progress in our understanding of several aspects of turbulent Rayleigh-Benard convection is reviewed. The focus is on the question of how the Nusselt number and the Reynolds number depend on the Rayleigh number Ra and the Prandtl number Pr, and on how the thicknesses of the thermal and the kinetic boundary layers scale with Ra and Pr. Non-Oberbeck-Boussinesq effects and the dynamics of the large-scale convection-roll are addressed as well. The review ends with a list of challenges for future research on the turbulent Rayleigh-Benard system.Comment: Review article, 34 pages, 13 figures, Rev. Mod. Phys. 81, in press (2009
    corecore