151 research outputs found

    Climate related sea-level variations over the past two millennia

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 108 (2011): 11017-11022, doi:10.1073/pnas.1015619108.We present new sea-level reconstructions for the past 2100 years based on salt-marsh sedimentary sequences from the US Atlantic coast. The data from North Carolina reveal four phases of persistent sea-level change after correction for glacial isostatic adjustment. Sea level was stable from at least BC 100 until AD 950. It then increased for 400 years at a rate of 0.6 mm/yr, followed by a further period of stable, or slightly falling, sea level that persisted until the late 19th century. Since then, sea level has risen at an average rate of 2.1 mm/yr, representing the steepest, century-scale increase of the past two millennia. This rate was initiated between AD 1865 and 1892. Using an extended semi-empirical modeling approach, we show that these sea-level changes are consistent with global temperature for at least the past millennium.Research was supported by NSF grants (EAR-0951686) to BPH and JPD. ACK thanks a NOSAMS internship, UPenn paleontology stipend and grants from GSA and NAMS. North Carolina sea-level research was funded by NOAA (NA05NOS4781182), USGS (02ERAG0044) and NSF (EAR-0717364) grants to BPH with S. Culver and R. Corbett (East Carolina University). JPD (EAR-0309129) and MEM (ATM-0542356) acknowledge NSF support. MV acknowledges Academy of Finland Project 123113 and COST Action ES0701

    Rapid optimization of stationary tokamak plasmas in RAPTOR: demonstration for the ITER hybrid scenario with neural network surrogate transport model QLKNN

    Get PDF
    This work presents a fast and robust method for optimizing the stationary radial distribution of temperature, density and parallel current density in a tokamak plasma and its application to first-principle-based modeling of the ITER hybrid scenario. A new solver is implemented in the RAPTOR transport code, enabling direct evaluation of the stationary solution to which the radial plasma profiles evolve. Coupled to a neural network emulation of the quasi-linear gyrokinetic QuaLiKiz transport model (QLKNN-hyper-10D), a first-principle-based estimate of the stationary state of the core plasma can be found at unprecedented computational speed (typically a few seconds on standard hardware). The stationary state solver is then embedded in a numerical optimization scheme, allowing the optimization of tokamak plasma scenarios in only a few minutes. The proposed method is applied to investigate the performance of ITER hybrid scenarios at different values of total plasma current, plasma density and pedestal height and for different power contributions in a heating mix consisting of electron cyclotron and neutral beam heating. Optimizing the radial distribution of electron cyclotron current drive (ECCD) deposition, the q profile is tailored to maximize the fusion gain Q, by maximizing the energy confinement predicted through the first-principles-based transport model, while satisfying q &gt; 1, avoiding sawtooth oscillations. It is found that optimal use of ECCD in ITER hybrid scenarios is to deposit power as close to the core as possible, while maintaining sufficient off-axis current drive to keep q above 1. Upper limits for the fusion gain Q are shown to be constrained either by minimum power requirements for the separatrix power flow to maintain H-mode or by minimum current drive requirements for q profile tailoring. Finally, it is shown that the ITER hybrid scenario operating window is significantly extended by an upgrade of the electron cyclotron power to 40 MW.</p

    Saltmarsh archives of vegetation and land use change from Big River Marsh, SW Newfoundland, Canada

    Get PDF
    Pollen and plant macrofossils are often well-preserved in coastal sediments, providing a palaeoenvironmental record of sea-level and landscape change. In this study, we examine the pollen and plant macrofossil assemblages of a well-dated saltmarsh sediment core from southwest Newfoundland, Canada, to establish recent coastal vegetation and land use change, to increase the knowledge of anthropogenic activities in the area and develop pollen chronozones for reconstructing marsh accumulation rates and to examine the representation of plant macrofossil remains in the wetland pollen profile. Grouping the pollen record into upland and wetland assemblages allows local events related to hydrological change to be separated from landscape-scale changes. The wetland pollen and plant macrofossil records indicate a general acceleration in sea-level rise ca. ad 1700. The sedge pollen and plant macrofossil records attest to multiple phases of rhizome encroachment during inferred periods of marine regression. Two chronozones are identified from the upland pollen profile; the first associated with the settlement of St. George’s Bay ca. ad 1800, signalled by increases in Plantago lanceolata and Ambrosia pollen; the second with the permanent settlement of the Port au Port peninsula ca. ad 1850, indicated by increased P. lanceolata and Rumex pollen. Comparison of the plant macrofossil and wetland pollen profiles highlights the underrepresentation of grass pollen preserved in the saltmarsh sediments and a need for further analysis of the zonation, pollen dispersal and macrofossil representation of sedge species in saltmarshes

    Live-cell imaging of sterculic acid - a naturally occurring 1,2-cyclopropene fatty acid - by bioorthogonal reaction with turn-on tetrazine-fluorophore conjugates

    Get PDF
    In the field of lipid research, bioorthogonal chemistry has made the study of lipid uptake and processing in living systems possible, whilst minimising biological properties arising from detectable pendant groups. To allow the study of unsaturated free fatty acids in live cells, we here report the use of sterculic acid, a 1,2-cyclopropene-containing oleic acid analogue, as a bioorthogonal probe. We show that this lipid can be readily taken up by dendritic cells without toxic side effects, and that it can subsequently be visualised using an inverse electron-demand Diels-Alder reaction with quenched tetrazine-fluorophore conjugates. In addition, the lipid can be used to identify changes in protein oleoylation after immune cell activation. Finally, this reaction can be integrated into a multiplexed bioorthogonal reaction workflow by combining it with two sequential copper-catalysed Huisgen ligation reactions. This allows for the study of multiple biomolecules in the cell simultaneously by multimodal confocal imaging.NWOERC-CoG 865175Molecular PhysiologyBio-organic Synthesi

    Low potency toxins reveal dense interaction networks in metabolism

    Get PDF
    Background The chemicals of metabolism are constructed of a small set of atoms and bonds. This may be because chemical structures outside the chemical space in which life operates are incompatible with biochemistry, or because mechanisms to make or utilize such excluded structures has not evolved. In this paper I address the extent to which biochemistry is restricted to a small fraction of the chemical space of possible chemicals, a restricted subset that I call Biochemical Space. I explore evidence that this restriction is at least in part due to selection again specific structures, and suggest a mechanism by which this occurs. Results Chemicals that contain structures that our outside Biochemical Space (UnBiological groups) are more likely to be toxic to a wide range of organisms, even though they have no specifically toxic groups and no obvious mechanism of toxicity. This correlation of UnBiological with toxicity is stronger for low potency (millimolar) toxins. I relate this to the observation that most chemicals interact with many biological structures at low millimolar toxicity. I hypothesise that life has to select its components not only to have a specific set of functions but also to avoid interactions with all the other components of life that might degrade their function. Conclusions The chemistry of life has to form a dense, self-consistent network of chemical structures, and cannot easily be arbitrarily extended. The toxicity of arbitrary chemicals is a reflection of the disruption to that network occasioned by trying to insert a chemical into it without also selecting all the other components to tolerate that chemical. This suggests new ways to test for the toxicity of chemicals, and that engineering organisms to make high concentrations of materials such as chemical precursors or fuels may require more substantial engineering than just of the synthetic pathways involved
    corecore