4 research outputs found

    Directed evolution of adeno-associated viruses for efficient gene transfer in the visual system

    No full text
    Les virus adĂ©no-associĂ©s (AAVs) font partie des vecteurs les plus efficaces pour le transfert de gĂšne, en particulier dans la rĂ©tine. Ils sont utilisĂ©s aussi bien pour des Ă©tudes biologiques que pour la thĂ©rapie gĂ©nique. MalgrĂ© cela, il reste encore des barriĂšres qui limitent leur utilisation. Nous proposons ici d’utiliser une technique d’évolution dirigĂ©e pour surmonter ces barriĂšres et amĂ©liorer l’efficacitĂ© des AAVs en tant que vecteurs de gĂšnes. Dans un premier temps, nous avons crĂ©Ă© trois librairies virales hautement diversifiĂ©es basĂ©es sur l’AAV2. Ces librairies Ă©taient constituĂ©es de capsides modifiĂ©es alĂ©atoirement pour leur donner de nouvelles propriĂ©tĂ©s. Nous avons ensuite rĂ©alisĂ© deux types de sĂ©lections. D’une part, nous avons sĂ©lectionnĂ© nos librairies virales dans le systĂšme visuel de la souris pour obtenir une capside capable de transport axonal antĂ©rograde trans-synaptique afin de pouvoir Ă©tudier simultanĂ©ment l’activitĂ© et la connectivitĂ© de rĂ©seaux neuronaux. Cette sĂ©lection a fortement convergĂ©e vers une capside nommĂ©e AAV2-7mD, dont la capacitĂ© de transport axonal antĂ©rograde trans-synaptique est plus efficace que les AAVs 1 et 2. D’autre part, nous avons sĂ©lectionnĂ© nos librairies virales directement sur des explants de maculas de rĂ©tine humaine afin dĂ©couvrir une capside capable de traverser la membrane limitante interne de la macula humaine. Ceci a pour but d’avoir un vecteur efficace pour des traitements de thĂ©rapie gĂ©nique par voie intra-vitrĂ©enne. Cette librairie a commencĂ© Ă  converger mais nous sommes toujours en attente du dernier cycle de sĂ©lection. Nous traitons donc dans cette thĂšse des rĂ©sultats de deux Ă©volutions dirigĂ©es sur l’AAV2 afin de crĂ©er des vecteurs de gĂšnes plus performants dans le systĂšme visuel.Adeno-associated viruses (AAVs) are among the most efficient vectors for gene transfer, particularly in the retina. They are used for asking biological questions as well as for gene therapy. Nonetheless, some barriers are still restraining their use. Here, we used a directed evolution method to overcome those barriers and improve the efficiency of AAVs for gene transfer. First, we created three highly diversified viral libraries based on AAV2. Those libraries were based on randomly modified capsids displaying new properties. Then, we did two types of selections. On one hand, we selected our libraries in the retinofugal pathway in order to obtain a capsid with enhanced axonal anterograde trans-synaptic transport capacities, so we could study simultaneously the activity and the connectivity of neuronal networks between the retina and the brain. This selection converged strongly toward a new capsid, named AAV2-7mD, with enhanced axonal anterograde trans-synaptic transport capacities compared to AAV1 and AAV2. On the other hand, we directly selected our viral libraries on human macular explants, to select capsids capable of crossing the human macular inner limiting membrane. Such a capsid would be very useful for retinal gene therapy via intravitreal injections. This library started to converge but we are still waiting to complete the last cycle of selection. In this thesis we discuss the results of these two directed evolution studies on AAV2 to create enhanced gene delivery vectors in the visual system

    Evolution dirigée de virus adéno-associés pour un transfert de gÚne efficace dans le systÚme visuel

    No full text
    Adeno-associated viruses (AAVs) are among the most efficient vectors for gene transfer, particularly in the retina. They are used for asking biological questions as well as for gene therapy. Nonetheless, some barriers are still restraining their use. Here, we used a directed evolution method to overcome those barriers and improve the efficiency of AAVs for gene transfer. First, we created three highly diversified viral libraries based on AAV2. Those libraries were based on randomly modified capsids displaying new properties. Then, we did two types of selections. On one hand, we selected our libraries in the retinofugal pathway in order to obtain a capsid with enhanced axonal anterograde trans-synaptic transport capacities, so we could study simultaneously the activity and the connectivity of neuronal networks between the retina and the brain. This selection converged strongly toward a new capsid, named AAV2-7mD, with enhanced axonal anterograde trans-synaptic transport capacities compared to AAV1 and AAV2. On the other hand, we directly selected our viral libraries on human macular explants, to select capsids capable of crossing the human macular inner limiting membrane. Such a capsid would be very useful for retinal gene therapy via intravitreal injections. This library started to converge but we are still waiting to complete the last cycle of selection. In this thesis we discuss the results of these two directed evolution studies on AAV2 to create enhanced gene delivery vectors in the visual system.Les virus adĂ©no-associĂ©s (AAVs) font partie des vecteurs les plus efficaces pour le transfert de gĂšne, en particulier dans la rĂ©tine. Ils sont utilisĂ©s aussi bien pour des Ă©tudes biologiques que pour la thĂ©rapie gĂ©nique. MalgrĂ© cela, il reste encore des barriĂšres qui limitent leur utilisation. Nous proposons ici d’utiliser une technique d’évolution dirigĂ©e pour surmonter ces barriĂšres et amĂ©liorer l’efficacitĂ© des AAVs en tant que vecteurs de gĂšnes. Dans un premier temps, nous avons crĂ©Ă© trois librairies virales hautement diversifiĂ©es basĂ©es sur l’AAV2. Ces librairies Ă©taient constituĂ©es de capsides modifiĂ©es alĂ©atoirement pour leur donner de nouvelles propriĂ©tĂ©s. Nous avons ensuite rĂ©alisĂ© deux types de sĂ©lections. D’une part, nous avons sĂ©lectionnĂ© nos librairies virales dans le systĂšme visuel de la souris pour obtenir une capside capable de transport axonal antĂ©rograde trans-synaptique afin de pouvoir Ă©tudier simultanĂ©ment l’activitĂ© et la connectivitĂ© de rĂ©seaux neuronaux. Cette sĂ©lection a fortement convergĂ©e vers une capside nommĂ©e AAV2-7mD, dont la capacitĂ© de transport axonal antĂ©rograde trans-synaptique est plus efficace que les AAVs 1 et 2. D’autre part, nous avons sĂ©lectionnĂ© nos librairies virales directement sur des explants de maculas de rĂ©tine humaine afin dĂ©couvrir une capside capable de traverser la membrane limitante interne de la macula humaine. Ceci a pour but d’avoir un vecteur efficace pour des traitements de thĂ©rapie gĂ©nique par voie intra-vitrĂ©enne. Cette librairie a commencĂ© Ă  converger mais nous sommes toujours en attente du dernier cycle de sĂ©lection. Nous traitons donc dans cette thĂšse des rĂ©sultats de deux Ă©volutions dirigĂ©es sur l’AAV2 afin de crĂ©er des vecteurs de gĂšnes plus performants dans le systĂšme visuel

    Vectors and Gene Delivery to the Retina

    No full text
    International audienceOne of the great advantages of the retina as a target tissue for gene delivery is the wide array of genetic tools that have been developed in the past decade. This includes a variety of vectors for therapeutic gene delivery to most types of retinal neurons and glia, as well as cell type–specific promoters for restricted gene expression in distinct neuronal subtypes. Within the scope of neuroscience applications and for gene therapy, it is now routine to express reporter genes, replacement genes, neuronal activity indicators, and microbial opsins in specific neuronal types in the mouse retina. However, there are considerable anatomical, physiological, immunological, and behavioral differences between the mouse and the human that limit the usefulness of these tools in humans and nonhuman primates. Several advances are now being made toward the goal of applying viral targeting tools to understand the primate retina. Here, we describe these advances, consider their potential to advance our understanding of the primate retina, and describe what will be needed to move forward

    ACIDES: on-line monitoring of forward genetic screens for protein engineering

    No full text
    Abstract Forward genetic screens of mutated variants are a versatile strategy for protein engineering and investigation, which has been successfully applied to various studies like directed evolution (DE) and deep mutational scanning (DMS). While next-generation sequencing can track millions of variants during the screening rounds, the vast and noisy nature of the sequencing data impedes the estimation of the performance of individual variants. Here, we propose ACIDES that combines statistical inference and in-silico simulations to improve performance estimation in the library selection process by attributing accurate statistical scores to individual variants. We tested ACIDES first on a random-peptide-insertion experiment and then on multiple public datasets from DE and DMS studies. ACIDES allows experimentalists to reliably estimate variant performance on the fly and can aid protein engineering and research pipelines in a range of applications, including gene therapy
    corecore