49 research outputs found

    Opinion: Recent developments and future directions in studying the mesosphere and lower thermosphere

    Get PDF
    This article begins with a review of important advances in the chemistry and related physics of the mesosphere and lower thermosphere (MLT) region of the atmosphere that have occurred over the past 2 decades, since the founding of Atmospheric Chemistry and Physics. The emphasis here is on chemistry, but we also discuss recent findings on atmospheric dynamics and forcings to the extent that these are important for understanding MLT composition and chemistry. Topics that are covered include observations, with satellite, rocket and ground-based techniques; the variability and connectedness of the MLT on various length scales and timescales; airglow emissions; the cosmic dust input and meteoric metal layers; and noctilucent/polar mesospheric ice clouds. The paper then concludes with a discussion of important unanswered questions and likely future directions for the field over the next decade

    A novel methodology to estimate pre-atmospheric dynamical conditions of small meteoroids

    Get PDF
    Recent observations using the Wind and Ulysses spacecrafts and the Solar Occultation For Ice Experiment (SOFIE) during the period between 2007 and 2020 indicate a total cosmic dust influx at Earth ranging from 22 to 32 tonnes per day. Much is still unclear about the formation, evolution, and propagation of this cosmic dust throughout our Solar System, as well as the transport and chemical interaction of such particles within our own atmosphere. Studying meteoroids, which are particles small and fast enough to ablate in the Earth’s upper atmosphere producing meteor plasma detectable by meteor radars, offers an opportunity to better understand these processes. While meteor radars provide a powerful tool to detect meteoroids, they are limited to detecting particles that produce a sufficient amount of plasma within the instrument’s field-of-view, and thus most of their trajectory remains undetected. In this work, we report a novel methodology, using new polarization measurements as well as two state-of-the art models, to determine the pre-atmosphere dynamical characteristics of the detected particles, before they suffer any significant ablation or deceleration. We present the results for 20 meteor detection case studies, and find that for the majority of particles, at least 80% (typically 95%) of the particle mass has already been lost at the time of detection. In addition, while all particles experienced deceleration by the time of detection, this was typically small (≤ 4% of their initial velocity). Future work will implement this new methodology to automatically determine the initial mass and velocities of individual meteors. This will help provide more precise meteor orbits and characterization of parent source populations, as well as the identification of potential interstellar particles

    Differential ablation of organic coatings from micrometeoroids simulated in the laboratory

    Get PDF
    Micrometeoroids contain organic material that may undergo differential ablation during atmospheric entry, potentially depositing organic material into Earth's atmosphere and affecting the radar detectability of meteors. To investigate the differential ablation of organics, we used a dust accelerator to shoot submicron polypyrrole-coated olivine particles at speeds of 10–20 km/s into a gas target containing air. A set of biased electrodes placed along the path of the particles measured the charges generated when the particles ablated and the ablated molecules collided with gas molecules. We observed that the particles differentially ablate their organic polypyrrole coatings prior to their inorganic olivine cores, producing spikes in charge production, with charge yields of 104–105 C/kg even at relatively low speeds. These measurements suggest that large organic molecules survived ablation and are responsible for the observed charge production since small molecules either do not produce ions at those speeds or produce them in much lower quantities than observed. We modeled the ablation using basic meteor physics by assuming that the polypyrrole coating decomposes into pyrrole monomer. Extending these results to the ablation of micrometeoroids in the atmosphere indicates that organic coatings should ablate at high altitudes within relatively narrow altitude ranges, which has consequences for the detectability of meteors by radar. Since the ablated coatings generate relatively large molecules, the results also suggest that micrometeoroids can deliver complex organic material into planetary atmospheres by ablating them during entry, potentially serving as a source of prebiotic organics

    Natural short-lived halogens exert an indirect cooling effect on climate

    Get PDF
    Observational evidence shows the ubiquitous presence of ocean-emitted short-lived halogens in the global atmosphere1,2,3. Natural emissions of these chemical compounds have been anthropogenically amplified since pre-industrial times4,5,6, while, in addition, anthropogenic short-lived halocarbons are currently being emitted to the atmosphere7,8. Despite their widespread distribution in the atmosphere, the combined impact of these species on Earth’s radiative balance remains unknown. Here we show that short-lived halogens exert a substantial indirect cooling effect at present (−0.13 ± 0.03 watts per square metre) that arises from halogen-mediated radiative perturbations of ozone (−0.24 ± 0.02 watts per square metre), compensated by those from methane (+0.09 ± 0.01 watts per square metre), aerosols (+0.03 ± 0.01 watts per square metre) and stratospheric water vapour (+0.011 ± 0.001 watts per square metre). Importantly, this substantial cooling effect has increased since 1750 by −0.05 ± 0.03 watts per square metre (61 per cent), driven by the anthropogenic amplification of natural halogen emissions, and is projected to change further (18–31 per cent by 2100) depending on climate warming projections and socioeconomic development. We conclude that the indirect radiative effect due to short-lived halogens should now be incorporated into climate models to provide a more realistic natural baseline of Earth’s climate system
    corecore