7,003 research outputs found
No Pulsar Kicks from Deformed Neutrinospheres
In a supernova core, magnetic fields cause a directional variation of the
neutrino refractive index so that resonant flavor oscillations would lead to a
deformation of the "neutrinosphere" for, say, tau neutrinos. The associated
anisotropic neutrino emission was proposed as a possible origin of the observed
pulsar proper motions. We argue that this effect was vastly overestimated
because the variation of the temperature over the deformed neutrinosphere is
not an adequate measure for the anisotropy of neutrino emission. The neutrino
flux is generated inside the neutron star core and is transported through the
atmosphere at a constant luminosity, forcing the temperature gradient in the
atmosphere to adjust to the inflow of energy from below. Therefore, no emission
anisotropy is caused by a deformation of the neutrinosphere to lowest order. An
estimate of the higher-order corrections must take into account the modified
atmospheric temperature profile in response to the deformation of the
neutrinosphere and the corresponding feedback on the core. We go through this
exercise in the framework of a simplified model which can be solved
analytically.Comment: Final version with minor corrections, to be published in PRD.
Includes a "Note Added" in response to astro-ph/981114
Mass estimation in the outer regions of galaxy clusters
We present a technique for estimating the mass in the outskirts of galaxy
clusters where the usual assumption of dynamical equilibrium is not valid. The
method assumes that clusters form through hierarchical clustering and requires
only galaxy redshifts and positions on the sky. We apply the method to
dissipationless cosmological N-body simulations where galaxies form and evolve
according to semi-analytic modelling. The method recovers the actual cluster
mass profile within a factor of two to several megaparsecs from the cluster
centre. This error originates from projection effects, sparse sampling, and
contamination by foreground and background galaxies. In the absence of velocity
biases, this method can provide an estimate of the mass-to-light ratio on
scales ~1-10 Mpc/h where this quantity is still poorly known.Comment: 14 pages, 7 figures, MN LaTeX style, MNRAS, in pres
Declaración de Berlín sobre acceso abierto
En concordancia con el espíritu de la Declaración de la Iniciativa sobre Acceso Abierto de Budapest, la Carta de ECHO y la Declaración de Bethesda sobre Publicación para Acceso
Abierto, se redactó la Declaración de Berlín para promover Internet como el
instrumento funcional que sirva de base global del conocimiento científico y la reflexión humana, y para especificar medidas que deben ser tomadas en cuenta por los encargados de
las políticas de investigación, y por las instituciones científicas, agencias de financiamiento, bibliotecas, archivos y museos
The Lorentz Force and the Radiation Pressure of Light
In order to make plausible the idea that light exerts a pressure on matter,
some introductory physics texts consider the force exerted by an
electromagnetic wave on an electron. The argument as presented is both
mathematically incorrect and has several serious conceptual difficulties
without obvious resolution at the classical, yet alone introductory, level. We
discuss these difficulties and propose an alternate demonstration.Comment: More or less as in AJ
Dynamics of Primordial Black Hole Formation
We present a numerical investigation of the gravitational collapse of
horizon-size density fluctuations to primordial black holes (PBHs) during the
radiation-dominated phase of the Early Universe. The collapse dynamics of three
different families of initial perturbation shapes, imposed at the time of
horizon crossing, is computed. The perturbation threshold for black hole
formation, needed for estimations of the cosmological PBH mass function, is
found to be rather than the generally employed
, if is defined as \Delta M/\mh, the
relative excess mass within the initial horizon volume. In order to study the
accretion onto the newly formed black holes, we use a numerical scheme that
allows us to follow the evolution for long times after formation of the event
horizon. In general, small black holes (compared to the horizon mass at the
onset of the collapse) give rise to a fluid bounce that effectively shuts off
accretion onto the black hole, while large ones do not. In both cases, the
growth of the black hole mass owing to accretion is insignificant. Furthermore,
the scaling of black hole mass with distance from the formation threshold,
known to occur in near-critical gravitational collapse, is demonstrated to
apply to primordial black hole formation.Comment: 10 pages, 8 figures, revtex style, submitted to PR
Three-dimensional simulations of type Ia supernovae
We present the results of three-dimensional hydrodynamical simulations of the
subsonic thermonuclear burning phase in type Ia supernovae. The burning front
model contains no adjustable parameters so that variations of the explosion
outcome can be linked directly to changes in the initial conditions. In
particular, we investigate the influence of the initial flame geometry on the
explosion energy and find that it appears to be weaker than in 2D. Most
importantly, our models predict global properties such as the produced nickel
masses and ejecta velocities within their observed ranges without any fine
tuning.Comment: 7 pages, 5 figures, accepted by A&
The Correlation Function of Clusters of Galaxies and the Amplitude of Mass Fluctuations in the Universe
We show that if a sample of galaxy clusters is complete above some mass
threshold, then hierarchical clustering theories for structure formation
predict its autocorrelation function to be determined purely by the cluster
abundance and by the spectrum of linear density fluctuations. Thus if the shape
of the initial fluctuation spectrum is known, its amplitude can be
estimated directly from the correlation length of a cluster sample in a way
which is independent of the value of . If the cluster mass
corresponding to the sample threshold is also known, it provides an independent
estimate of the quantity . Thus cluster data should
allow both and to be determined observationally. We
explore these questions using N-body simulations together with a simple but
accurate analytical model based on extensions of Press-Schechter theory.
Applying our results to currently available data we find that if the linear
fluctuation spectrum has a shape similar to that suggested by the APM galaxy
survey, then a correlation length in excess of 20\mpch for Abell
clusters would require , while r_0<15\mpch would require
. With conventional estimates of the relevant mass threshold
these imply \Omega_0\la 0.3 and \Omega_0\ga 1 respectively.Comment: Latex, 25 pages (including 8 PS figures). The PS-file of the paper is
also available via anonymous ftp at:
ftp://ibm-3.mpa-garching.mpg.de/pub/jing/xicc.ps . Submitted to MNRAS. In the
replaced version, a typo in Eq.(1a) is fixe
Dissipation of Magnetohydrodynamic Waves on Energetic Particles: Impact on Interstellar Turbulence and Cosmic Ray Transport
The physical processes involved in diffusion of Galactic cosmic rays in the
interstellar medium are addressed. We study the possibility that the nonlinear
MHD cascade sets the power-law spectrum of turbulence which scatters charged
energetic particles. We find that the dissipation of waves due to the resonant
interaction with cosmic ray particles may terminate the Kraichnan-type cascade
below wavelengths 10^13 cm. The effect of this wave dissipation has been
incorporated in the GALPROP numerical propagation code in order to asses the
impact on measurable astrophysical data. The energy-dependence of the
cosmic-ray diffusion coefficient found in the resulting self-consistent model
may explain the peaks in the secondary to primary nuclei ratios observed at
about 1 GeV/nucleon.Comment: 15 pages, 20 figures, 1 table, emulateapj.cls; To be published in ApJ
10 May 2006, v.64
Towards a Stable Numerical Evolution of Strongly Gravitating Systems in General Relativity: The Conformal Treatments
We study the stability of three-dimensional numerical evolutions of the
Einstein equations, comparing the standard ADM formulation to variations on a
family of formulations that separate out the conformal and traceless parts of
the system. We develop an implementation of the conformal-traceless (CT)
approach that has improved stability properties in evolving weak and strong
gravitational fields, and for both vacuum and spacetimes with active coupling
to matter sources. Cases studied include weak and strong gravitational wave
packets, black holes, boson stars and neutron stars. We show under what
conditions the CT approach gives better results in 3D numerical evolutions
compared to the ADM formulation. In particular, we show that our implementation
of the CT approach gives more long term stable evolutions than ADM in all the
cases studied, but is less accurate in the short term for the range of
resolutions used in our 3D simulations.Comment: 17 pages, 15 figures. Small changes in the text, and a change in the
list of authors. One new reference adde
- …
