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The Lorentz force and the radiation pressure of light

Tony Rothman?®

Department of Physics, Princeton University, Princeton, New Jersey 08544

Stephen Boughn”

Department of Astronomy, Haverford College, Haverford, Pennsylvania 19041

(Received 8 July 2008; accepted 27 October 2008)

To make plausible the idea that light exerts a pressure on matter, some introductory physics texts
consider the force exerted by an electromagnetic wave on an electron. The argument as presented is
mathematically incorrect and has several serious conceptual difficulties without obvious resolution
at the classical, yet alone introductory, level. We discuss these difficulties and propose an alternative

argument. © 2009 American Association of Physics Teachers.

[DOL: 10.1119/1.3027432]

I. THE FRESHMAN ARGUMENT

The interaction of light and matter plays a central role, not
only in physics itself, but in any introductory electricity and
magnetism course. To develop this topic, most courses intro-
duce the Lorentz force law, which gives the electromagnetic
force acting on a charged particle, and later discuss Max-
well’s equations. Students are then persuaded that Maxwell’s
equations admit wave solutions that travel at the speed of
light, thus establishing the connection between light and
electromagnetic waves. At this point instructors generally
state that electromagnetic waves carry momentum in the di-
rection of propagation via the Poynting flux vector and that
light therefore exerts a radiation pressure on matter. The as-
sertion is not controversial: Maxwell' recognized that hght
should cause a radiation pressure, but his demonstration is
not immediately transparent to present-day students

At least two texts, the Berkeley Physics Course® and Tipler
and Mosca’s Physics for Scientists and Engmeers,3 attempt
to make the suggestion that light carries momentum more
plausible by calculating the Lorentz force exerted by an elec-
tromagnetic wave on an electron. In their discussion the au-
thors claim—with differing degrees of rigor—to show that a
light wave exerts an average force on the electron in the
direction of propagation Tipler and Mosca, for example,
then derive an expresswn for the radiation pressure produced
by a light wave. A cursory look at their argument shows that
it is incorrect in several obvious ways and in other respects
leads rapidly into deep waters.

The purpose of this note is threefold: to demonstrate why
the “freshman” argument is incorrect, to show that nontrivial
physics must be introduced to correct it, and to present a
more plausible derivation of radiation pressure that is acces-
sible to first-year students. Consider, then, the situation
shown in Fig. 1. We assume that a light wave propagates in
the +z-direction, its E-field oscillates in the x-direction, and
its B-field oscillates in the y-direction. The wave impinges on
a stationary particle with charge ¢, exerting on it a force
according to the Lorentz force law. In units with ¢=1 the
Lorentz force is

F=¢(E+v XB), (1)
which reduces to
F=¢4(E, - UZB},);: + qvaylA(. (2)
The freshman argument goes like this: Assume that
E~sin(wr) and B~ sin(wt). The particle is initially acceler-
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ated by the E-field in the +x-direction and acquires a velocity
v,>>0. The magnetic field then exerts a force on the charge
equal to gv X B, which points in the +z-direction, the direc-
tion of propagation of the wave. The electromagnetic wave
therefore carries a momentum in this direction. Reference 2
states that “...the motion of the charge is mainly due to E.
Thus v is along E and reverses direction at the same rate that
E reverses direction. But B reverses whenever E reverses.
Thus v X B always has the same sign.”4

A moment’s reflection shows that the last assertion is
false. After one-half cycle, both E and B change sign. But
because during this time the E-field has accelerated the
charge entirely in the +x-direction, the electron at that point
still has a positive x-velocity. (In other words, the velocity
and acceleration are essentially 90° out of phase, as in a
harmonic oscillator.) A similar argument holds for the
z-velocity. Thus the cross product v X B reverses sign and
now points in the negative z-direction, opposite to the direc-
tion of propagation. Furthermore, because there is an
x-component to the force, one needs to argue that on average
it is zero.

Reference 2 claims that the first two terms in Eq. (2) av-
erage to zero, the first because E varies sinusoidally, the
second because B varies sinusoidally as well and because we

..can assume that the increment of velocity along z during
one cycle is negligible, that is, we can take the slowly in-
creasing velocity v, to be constant during one cycle.” * With
these assumptions Ref. 2 concludes that the average force on

the charge is (F >=q<vay)lA(. Although the result might seem

plausible, it is also incorrect because the velocity and mag-
netic field are out of phase and consequently the time aver-
age of their product vanishes. That this is so, as well as the
previous claim, can be seen by an integration of the equation
of motion.

II. EQUATION OF MOTION

To determine the momentum of the charge, which we take
to be an electron, assume the electric and magnetic fields
of the light wave are given by E=E,sin(wf+@)i and
B=B, sin(wt+ ¢)j, where ¢ is an arbitrary phase angle. In
our units Ey=By. We set Fy j..n,=mdv/dt in Eq. (2) to obtain
a pair of coupled ordinary linear first-order equations for the
electron velocity:

© 2009 American Association of Physics Teachers 122
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Fig. 1. An electromagnetic wave traveling in the z-direction strikes a point
particle with charge ¢g. The E-field is taken in the x-direction and the B-field
is taken in the y-direction.

d
f = w, sin(wt + P)v,, (32)
d
f: w. sin(wt + $)[1 -v_], (3b)

where we have let w.=gB,/m, the cyclotron frequency.
Equations (3) have the somewhat surprising analytic solu-
tions

v.(t) =c cos[& cos(wt + (;S)}

+c, sin{& cos(wt + ¢)] +1, (4a)
w

v, (t)=c, sin{& cos(wt + ¢)}

-c, cos[ Le cos(wt + d))] , (4b)

where ¢; and ¢, are the integration constants.
If we take v.(0)=v,(0)=0, which is reasonable and of suf-
ficient generality for our purposes, we find

(OR . W,
c1=—cos{—cos d)}, c2=—sm[—cos 4, &)
w

w

and the full solutions are therefore

v.(t)=- cos(& cos qﬁ)cos[& cos(wt + (b)]

- sin(ﬁ cos qb)sin[& cos(wt + qb)] +1, (6a)
w w
v,(t)=- cos(& cos qS) sin[& cos(wt + (}S)}
® ®

(O]

+ sin(ﬂ cos qS)cos[% cos(wt + qb)} . (6b)

The behavior of these solutions is not particularly trans-
parent, but can easily be plotted. In Figs. 2—4 we show sev-
eral graphs for various values of w./w and phase angle ¢.
Note that regardless of ¢, v, is always positive, but that there
is also a nonzero v, whose average can be positive, negative,
or zero depending on ¢. The ¢=0 case is shown in
Figs. 2 and 4 and the ¢=m/2 case in Fig. 3. Also, for
v, <1l,v,>v,.
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Fig. 2. The x- and z-velocities versus wt for w./w=0.1 and ¢=0. Note that
from the small w./® approximation (see text) v,>v_; in this case v, /v,
=0.1.

Additional insight into the solutions can be obtained by
examining the limit w./w<<1. For ordinary light sources at
optical frequencies w~ 10'®rad/s, consideration of the
Poynting flux (in the following section) gives w./w~ 107!,
and so the limit is well satisfied. For high-powered lasers,
such as those at the National Ignition Facility with pulse
energy ~2 MJ, it is possible that w, exceeds w. For w.<w,
expansion of the solutions (6) to lowest order in w,./w for
¢=0 yields

1{ w.\?
v, = E(j) [cos(wr) — 177, (7a)
v, = (%)[1 — cos(wn)]. (7b)

Both v, and v, are positive definite, as shown in Fig. 2.
Therefore their averages must be as well. This in itself con-
tradicts the arguments of Ref. 2 that (F,)=0 but that (F.)
#0. Note also that v, is of order (w./w)?, and v, is of order
./ w. The behavior coincides with the plots, but suggests
that because vi~(wc/w)2, a consistent, relativistic calcula-
tion will significantly change vz.5 Moreover, the time aver-
ages of both v, and v, vanish to all orders, and so it is in fact
impossible to exert a net force on the particle.

One might object to the arguments of this section on the
grounds that we have taken E and B to be simple harmonic
~sin(wt) rather than wavelike ~sin(kz—wt). However, it is
evident from Eq. (7) that kz<wt always and that such cor-
rections are therefore negligible, an assertion borne out by
numerical calculations.

0.1 »
VX,VZ

0054 |

fol 20 | 130 40

-0.05

-0.1+

Fig. 3. The same plot as in Fig. 2 except that ¢p=7/2. In this case the time
average of v,=0.
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Fig. 4. The same as Fig. 2 except that w./w=0.5.

III. INTERPRETATION

The question is whether the behavior just discussed can be
reconciled with the classical picture of the Poynting flux. The
Poynting vector in our units is

_EXB
T Ax

and the time average is (S)=Re(E X B*)/87r. S points in the
direction of propagation of the electromagnetic wave and in
units with c=1 can be regarded interchangeably as power per
unit area, energy per unit volume (or pressure), or momen-
tum flux. If the freshman argument is correct, then the par-
ticle should be accelerated in the direction of the Ponyting
vector. But our previous results show that, on the contrary,
the particle drifts off in some other direction at a constant
average velocity.

Unfortunately, there seem to be several deep inconsisten-
cies in the entire approach. One is that the freshman argu-
ment is an invalid attempt to apply the standard classical
derivation that is invoked to identify the Poynting flux with
electromagnetic momentum, a derivation which breaks down
in the limit we have been considering. That is, advanced
texts such as Jackson,’ typically begin by considering the
Lorentz force on a volume of charges:

: (8)

dp =f (pE + J X B)d’x. 9)
dt vol

The first step is to eliminate the charge density p in favor of
E via Gauss’s law, p=(1/47)V -E. We also eliminate J in
favor of VXB via Ampere’s law to find

d d( 1 i
M+—f —(EXB)dx=— | [E(V-E)
dt dt),,4m 41 ) o

+E X (VXE)+B(V-B)-B X (V X B)]d*.
(10)

This result is purely formal, which after the elimination of p
and J relies only on vector identities. Because the second
term on the left is the only electromagnetic term with a time
derivative, we tentatively identify it with the momentum of
the field.

The crucial difference between the ‘“graduate” approach
and the freshman method, however, is that in the graduate
approach we consider a continuous charge distribution. In
the limit of a single charge, the p in the Lorentz force law
becomes the test charge distribution, whereas the p in

124 Am. J. Phys., Vol. 77, No. 2, February 2009

Gauss’s law becomes the source charge distribution and they
cannot be equated. In the present situation there is not only a
single test charge but no source charges whatsoever. Thus the
standard derivation cannot be applied. The only volume we
have at our disposal is the volume of the electron itself,
which leads quickly into quantum territory.

A second difficulty is that the assumption of plane waves
with constant amplitude is an assumption of constant energy
and momentum. If the light wave has constant momentum,
how can any be transferred to the electron? There are many
instances in physics where we ignore the backreaction of a
recoiling particle on the system. For instance, according to
conservation of momentum, a ball should not bounce off a
wall, until it is realized that the ball’s change in momentum
is absorbed by Earth.

Holding the amplitude constant in the current calculation
might seem a reasonable approximation, but to be totally
consistent we should take into consideration the fact that the
electron is accelerating and consequently emits radiation,
and with that radiation momentum. The customary way to do
this calculation in the nonrelativistic limit is via Thomson
scattering. The differential Thomson scattering cross section
for a wave polarized in the x-direction is

do 1
Q2

22\2
(—) (cos? B cos® ¢+ sin® @), (11)

m

where 6 is the angle between the incident and scattered
wave. The differential scattering cross section is defined as
the ratio of the radiated power per unit solid angle to the
incident power per unit area. The Thomson cross section,
though, is symmetric with respect to reflection through the
origin and consequently as much momentum is emitted in
the forward as in the backward direction and hence no net
force is exerted on electron. It is therefore not obvious how
to remedy this situation in the classical limit. Only when we
do a quantum mechanical derivation (Compton scattering) do
we see an asymmetry in the scattering cross section. In the
present circumstance, however, fiw/m,~ 1075, so it would
appear that quantum corrections should be unnecessary.

What we do in practice to obtain the radiation pressure of
light in, say, astrophysical calculations is to multiply the
time-averaged Poynting flux (S) by the total Thomson cross
section o7. One can see why this works as follows. A photon
scattered off an electron will have a z-momentum
p.=pocos O for initial momentum p,, and it therefore re-
moves (1-cos 6)p, from the original momentum compo-
nent; the electron must gain the same amount. Multiplying
the differential Thomson scattering cross section in Eq. (11)
by (1-cos 6) and integrating over the sphere gives the total
Thomson scattering cross section

2\2
ch:S—W(e—) . (12)

3 \m

Multiplication by the momentum flux of photons will give
the total force on the electron. Because the Poynting flux is
the momentum flux of photons, the same numerical result is
obtained by multiplying the Thomson cross section by the
time-averaged Poynting flux. This argument, however, relies
on the quantum nature of photons. The Thomson cross sec-
tion is the nonrelativistic limit of a cross section that must
ultimately be derived from QED, and so we see that the
freshman argument leads quickly to a situation that might
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have no resolution in the realm of classical physics!

The failing of Thomson scattering is due to the fact that no
energy is removed from the original beam. A possible clas-
sical “out” to this situation is to assert that the energy radi-
ated by the electron must be that lost by the incoming beam.
Therefore because E=p for a classical wave, momentum
conservation implies that the electron must acquire a
z- momentum as for the Compton scattering case just
discussed.” Although this argument is valid in terms of con-
servation laws, it gives no mechanism for transferring the
energy from the incident wave to the electron. Unfortunately,
modeling the process as interference between the incident
plane wave and the spherical wave outgoing from the elec-
tron fails to result in any transfer of z-momentum from the
wave to the charge. To recover the Compton result eventu-
ally requires including the radiation-reaction force on the
electron, which we now consider, but because this derivation
involves the classical radius of the electron, it has already
gone beyond the realm of classical electromagnetism.

The most straightforward way to deal with the failure of
the classical approaches is via the Abraham-Lorentz model,
which accounts for the energy radiated by the electron, if in
a somewhat ad hoc manner. From the Larmor formula the
energy radiated by an accelerated electron over a time 7 is
~2¢%a>T/3. Equating this energy to the kinetic energy lost
by the particle ~ma®T? gives a characteristic time to lose all
the energy to radiation:

2¢?
= (13)

This timescale is 2/3 the time for light to cross the clas-
sical radius of the electron, rL.=ez/ m, and has a value
7~1072 5. The total force acting on a particle is now
mv=F+F 4 where F,, is the radiation-reaction force.
Conservation of energy considerations led Abraham and Lor-
entz to propose that F.,4=m7V (see Ref. 7 for more details)
and consequently obtain the famous formula

m(v - ) =F,,. (14)

With sufficient massaging, Eq. (14) can be applied to the
present circumstance to obtain the desired answer, that is, the
force imparted to the electron by an electromagnetic wave is
F=(S)oy. Equation (2) now becomes

(15a)

. . e
Uy = TUx= Z(Ex - vZBy) >

» (15b)

. .. e
U,—1,=—U,B
m
In the nonrelativistic regime v,<<1 and we ignore the second
term on the right in Eq. (15a). We also take both v, and v, to
be of the form v=vye™*, which is of course manifestly un-
true according to the results of Sec. II. Then v,=—iwv, and
,=—w*v,. Equation (15a) becomes

—iov(l +iwT) = EEx, (16)
m

or with w7<<1

ie
v,=—E(l-iwT). (17)
mw
125 Am. J. Phys., Vol. 77, No. 2, February 2009

With the assumption that w./w<<1 and w7<<1 the U, term
in Eq. (15b) can be ignored. Then

ie?
v, = EB V(1 —iwT). (18)
m?

For simplicity, take £, and B, to be real. We want the time
average of the real part of this expression, or

- e—%_w)ar (19)

(F;)=(mu,
The earliest paper we have found that proposes this calcula-
tion is by Page in 1920, although one suspects that Edding-
ton carried it out earlier. Clearly there are a few things to be
desired in the derivation, but it does show that the radiation-
reaction force is necessary to obtain the claimed result.

With slightly more work the conclusion can be put on a
firmer footing via a perturbation calculation’ as follows.
Note that Eq. (7) is the zeroth-order solution of Eq. (15), that
is, when 7=0 and v,<<1 is neglected. Assume v,=v,y+v,
and v, = (v.,9+v,;) <v,, where the subscript 0 refers to the
zeroth-order solution and the subscript 1 refers to the pertur-
bation. It is then not too difficult to show that the surviving
U, is the perturbative part:

U.1 = 0, sin(wr) = wa sin®(wt). (20)

Taking the time average of this expression vindicates the
previous result. We emphasize that the Abraham-Lorentz
model includes an explicit statement about the structure of
the electron and hence cannot be regarded as entirely classi-
cal; the model is a transition to quantum mechanics and
quantum field theory.

IV. ALTERNATIVE APPROACH

Despite the many pitfalls revealed by the above methods,
there is a superior and convincing demonstration that light
exerts a pressure on matter, one that should be accessible to
students who have had a basic exposure to Maxwell’s equa-
tions. The advantage of this demonstration is that it avoids
consideration of the force acting on a point charge and can
therefore be carried out at the purely classical level. For this
reason it should be adopted by introductory textbook authors.
What follows is a 51mp11ﬁed version of a calculation de-
scribed by Planck."’

As before, consider a light wave propagating in the
+z-direction that bounces off a mirror at z=0 (see Fig. 5). We
take the mirror to be a near perfect conductor of height dx,
width dy, and thickness z. The electric field of the light is a
superposition of right- and left-traveling waves:

E,.=E;cos(kz — wt) — E; cos(kz + wr), (21)

where k=24r/1t is the wave number, and we have included a
phase change on reflection. (This solution ensures that E=0
at the surface of the conductor. Recall that the tangential
component of an E-field must be continuous across a bound-
ary, and because the interior field essentially vanishes for a
good conductor, the exterior field at the boundary must also.)

From the differential form of Faraday’s law,"!
V XE=-dB/dt, we have
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Fig. 5. A light wave traveling in the z-direction strikes an almost perfectly
conducting mirror of thickness z, width dy, and height dx. An Amperian
loop in the yz plane is also shown, with the direction of B given by the
right-hand rule.

OE . A
VXE-= P ~j = — Egk[sin(kz — wt) — sin(kz + wt)]j
Z

B

ot 22)

Integrating with respect to ¢ and remembering that k=w in
units where c=1 gives

B = Ey[cos(kz — wr) + cos(kz + wr)]]
= 2B, cos(kz)cos(wr) J . (23)

Notice that at the boundary, B=2B cos(wt) #0 and that
therefore by Ampere’s law, $B-ds=411, oscillating currents
must be induced near the surface of the mirror. Because B is
in the *y-direction, the right-hand-rule tells us that these
currents will be in the *x-direction, and that I XB will al-
ways point in the +z-direction. Consequently, the Lorentz
force due to the light, F=Idx X B for a mirror of height dx
and total current /, will produce a force in the direction of
propagation.

We can calculate the magnitude of the force simply and
plausibly. The magnitude of the Lorentz force is dF=1dxB,
or dF=JdxdydzB for current density J. The differential form
of Ampere’s law tells us that

OB,
V><B=—722i=47ﬂ, (24)

or J=—(1/4m)dB,/ dz. The Lorentz force therefore becomes

dF 1 dB,
- — 2 g, (25)
dxdy 41 9z

The quantity on the left is dP, where P is the pressure. Be-
cause the only spatial dependence of B is on z, we can ignore
the distinction between the partial and full differentials. Evi-
dently, because dB,/dz is connected to J, we must interpret B
as being the field exerting a force on a given slice within the
conductor. If we assume that the magnetic field drops off to
zero at infinity, which is certainly true inside a good conduc-

126 Am. J. Phys., Vol. 77, No. 2, February 2009

tor where the falloff is exponential, the total pressure on the
mirror should be

1 ( 1 1
P=- —f BdB= +—B(0)>= —Bj cos*(wt), (26)
4 ), 8w 2w

where the last equality follows from Eq. (23) and the conti-
nuity of the tangential component of B across the boundary.
The time average of Eq. (26) gives

EyB
pP= ﬁ = 2<S>incident (27)
as desired. Note that the factor of 2 is expected due to the
recoil of the wave off the mirror.

There are a few tacit assumptions in this derivation that
should be made explicit. One might wonder, for example,
why we used Ampere’s law (24) to calculate the conduction
current, rather than Faraday’s law, d¢/dt=—¢E-ds=&, for
the magnetic flux ¢=Bdxdz and the induced EMF &. Nor-
mally, we would have students use this law to calculate the
induced current /=&/R in, for example, a wire loop of resis-
tance R. However, in a good conductor E<<B and hence
|dp/dt|=$E-ds< §B-ds=4ml, the last equality represent-
ing Ampere’s law.

Furthermore, the B-field in Eq. (24) includes both the in-
cident field and that generated by the induced currents. It
seems unreasonable that the portion of the B-field generated
by the induced currents can result in a net force on the cur-
rents themselves (no “Munchausen effect”'?). A detailed cal-
culation demonstrates that the integrated force exerted on the
induced currents by the induced B-field vanishes. With these
assumptions the simpler derivation we have presented is
sound and shows that light waves do exert a pressure on
matter in the direction of propagation.

In conclusion, although one does not, and cannot, expect
derivations at the introductory level to be uniformly rigorous,
this case is of particular interest because the interaction of
light with matter is of fundamental importance. Moreover,
the explanation presented in some textbooks is so seriously
flawed that even students sometimes notice the difficulties.
Rather than try to paper over these problems with what must
be regarded as nonsensical arguments, the occasion would be
better exploited to point out that physics is composed of a
collection of models that are brought to bear in explaining
physical phenomena, but that these models have limited do-
mains of applicability and as often as not are inconsistent.
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