465 research outputs found

    Response of Photochemical Processes of Photosynthesis to Dinitrogen Fixation in Soybean

    Full text link

    A lower bound on blowup rates for the 3D incompressible Euler equation and a single exponential Beale-Kato-Majda type estimate

    Full text link
    We prove a Beale-Kato-Majda type criterion for the loss of regularity for solutions of the incompressible Euler equations in Hs(R3)H^{s}({\mathbb R}^3), for s>52s>\frac52. Instead of double exponential estimates of Beale-Kato-Majda type, we obtain a single exponential bound on u(t)Hs\|u(t)\|_{H^s} involving the length parameter introduced by P. Constantin in \cite{co1}. In particular, we derive lower bounds on the blowup rate of such solutions.Comment: AMS Latex, 15 page

    Antarctic-wide array of high-resolution ice core records reveals pervasive leadpollution began in 1889 and persists today

    Get PDF
    Interior Antarctica is among the most remote places on Earth and was thought to be beyond the reach of human impacts when Amundsen and Scott raced to the South Pole in 1911. Here we show detailed measurements from an extensive array of 16 ice cores quantifying substantial toxic heavy metal lead pollution at South Pole and throughout Antarctica by 1889 – beating polar explorers by more than 22 years. Unlike the Arctic where lead pollution peaked in the 1970s, lead pollution in Antarctica was as high in the early 20th century as at any time since industrialization. The similar timing and magnitude of changes in lead deposition across Antarctica, as well as the characteristic isotopic signature of Broken Hill lead found throughout the continent, suggest that this single emission source in southern Australia was responsible for the introduction of lead pollution into Antarctica at the end of the 19th century and remains a significant source today. An estimated 660 t of industrial lead have been deposited over Antarctica during the past 130 years as a result of mid-latitude industrial emissions, with regional-to-global scale circulation likely modulating aerosol concentrations. Despite abatement efforts, significant lead pollution in Antarctica persists into the 21st century

    Investigating Aspergillus nidulans secretome during colonisation of cork cell walls

    Get PDF
    Cork, the outer bark of Quercus suber, shows a unique compositional structure, a set of remarkable properties, including high recalcitrance. Cork colonisation by Ascomycota remains largely overlooked. Herein, Aspergillus nidulans secretome on cork was analysed (2DE). Proteomic data were further complemented by microscopic (SEM) and spectroscopic (ATRFTIR) evaluation of the colonised substrate and by targeted analysis of lignin degradation compounds (UPLC-HRMS). Data showed that the fungus formed an intricate network of hyphae around the cork cell walls, which enabled polysaccharides and lignin superficial degradation, but probably not of suberin. The degradation of polysaccharides was suggested by the identification of few polysaccharide degrading enzymes (β-glucosidases and endo-1,5--L-arabinosidase). Lignin degradation, which likely evolved throughout a Fenton-like mechanism relying on the activity of alcohol oxidases, was supported by the identification of small aromatic compounds (e.g. cinnamic acid and veratrylaldehyde) and of several putative high molecular weight lignin degradation products. In addition, cork recalcitrance was corroborated by the identification of several protein species which are associated with autolysis. Finally, stringent comparative proteomics revealed that A. nidulans colonisation of cork and wood share a common set of enzymatic mechanisms. However the higher polysaccharide accessibility in cork might explain the increase of β-glucosidase in cork secretom

    The relative importance of phytoplankton aggregates and zooplankton fecal pellets to carbon export: insights from free-drifting sediment trap deployments in naturally iron-fertilised waters near the Kerguelen Plateau

    Get PDF
    The first KErguelen Ocean and Plateau compared Study (KEOPS1), conducted in the naturally iron-fertilised Kerguelen bloom, demonstrated that fecal material was the main pathway for exporting carbon to the deep ocean during summer (January–February 2005), suggesting a limited role of direct export via phytodetrital aggregates. The KEOPS2 project reinvestigated this issue during the spring bloom initiation (October–November 2011), when zooplankton communities may exert limited grazing pressure, and further explored the link between carbon flux, export efficiency and dominant sinking particles depending upon surface plankton community structure. Sinking particles were collected in polyacrylamide gel-filled and standard free-drifting sediment traps (PPS3/3), deployed at six stations between 100 and 400 m, to examine flux composition, particle origin and their size distributions. Results revealed an important contribution of phytodetrital aggregates (49 ± 10 and 45 ± 22% of the total number and volume of particles respectively, all stations and depths averaged). This high contribution dropped when converted to carbon content (30 ± 16% of total carbon, all stations and depths averaged), with cylindrical fecal pellets then representing the dominant fraction (56 ± 19%).At 100 and 200 m depth, iron- and biomass-enriched sites exhibited the highest carbon fluxes (maxima of 180 and 84 ± 27 mg C m-2 d-1, based on gel and PPS3/3 trap collection respectively), especially where large fecal pellets dominated over phytodetrital aggregates. Below these depths, carbon fluxes decreased (48 ± 21% decrease on average between 200 and 400 m), and mixed aggregates composed of phytodetritus and fecal matter dominated, suggesting an important role played by physical aggregation in deep carbon export.Export efficiencies determined from gels, PPS3/3 traps and 234Th disequilibria (200 m carbon flux/net primary productivity) were negatively correlated to net primary productivity with observed decreases from ~ 0.2 at low-iron sites to ~ 0.02 at high-iron sites. Varying phytoplankton communities and grazing pressure appear to explain this negative relationship. Our work emphasises the need to consider detailed plankton communities to accurately identify the controls on carbon export efficiency, which appear to include small spatio-temporal variations in ecosystem structure

    The Beale-Kato-Majda criterion to the 3D Magneto-hydrodynamics equations

    Full text link
    We study the blow-up criterion of smooth solutions to the 3D MHD equations. By means of the Littlewood-Paley decomposition, we prove a Beale-Kato-Majda type blow-up criterion of smooth solutions via the vorticity of velocity only, i. e. \sup_{j\in\Z}\int_0^T\|\Delta_j(\na\times u)\|_\infty dt, where Δj\Delta_j is a frequency localization on ξ2j|\xi|\approx 2^j.Comment: 12page

    Blow-up of critical Besov norms at a potential Navier-Stokes singularity

    Get PDF
    We show that the spatial norm of any strong Navier-Stokes solution in the space X must become unbounded near a singularity, where X may be any critical homogeneous Besov space in which local existence of strong solutions to the 3-d Navier-Stokes system is known. In particular, the regularity of these spaces can be arbitrarily close to -1, which is the lowest regularity of any Navier-Stokes critical space. This extends a well-known result of Escauriaza-Seregin-Sverak (2003) concerning the Lebesgue space L3L^3, a critical space with regularity 0 which is continuously embedded into the spaces we consider. We follow the "critical element" reductio ad absurdum method of Kenig-Merle based on profile decompositions, but due to the low regularity of the spaces considered we rely on an iterative algorithm to improve low-regularity bounds on solutions to bounds on a part of the solution in spaces with positive regularity

    PhOTO Zebrafish: A Transgenic Resource for In Vivo Lineage Tracing during Development and Regeneration

    Get PDF
    Background: Elucidating the complex cell dynamics (divisions, movement, morphological changes, etc.) underlying embryonic development and adult tissue regeneration requires an efficient means to track cells with high fidelity in space and time. To satisfy this criterion, we developed a transgenic zebrafish line, called PhOTO, that allows photoconvertible optical tracking of nuclear and membrane dynamics in vivo. Methodology: PhOTO zebrafish ubiquitously express targeted blue fluorescent protein (FP) Cerulean and photoconvertible FP Dendra2 fusions, allowing for instantaneous, precise targeting and tracking of any number of cells using Dendra2 photoconversion while simultaneously monitoring global cell behavior and morphology. Expression persists through adulthood, making the PhOTO zebrafish an excellent tool for studying tissue regeneration: after tail fin amputation and photoconversion of a ~100µm stripe along the cut area, marked differences seen in how cells contribute to the new tissue give detailed insight into the dynamic process of regeneration. Photoconverted cells that contributed to the regenerate were separated into three distinct populations corresponding to the extent of cell division 7 days after amputation, and a subset of cells that divided the least were organized into an evenly spaced, linear orientation along the length of the newly regenerating fin. Conclusions/Significance: PhOTO zebrafish have wide applicability for lineage tracing at the systems-level in the early embryo as well as in the adult, making them ideal candidate tools for future research in development, traumatic injury and regeneration, cancer progression, and stem cell behavior
    corecore