102 research outputs found

    Autophagy is Involved in Cardiac Remodeling in Response to Environmental Temperature Change

    Full text link
    Objectives: To study the reversibility of cold-induced cardiac hypertrophy and the role of autophagy in this process. Background: Chronic exposure to cold is known to cause cardiac hypertrophy independent of blood pressure elevation. The reversibility of this process and the molecular mechanisms involved are unknown. Methods: Studies were performed in two-month-old mice exposed to cold (4°C) for 24 h or 10 days. After exposure, the animals were returned to room temperature (21°C) for 24 h or 1 week. Results: We found that chronic cold exposure significantly increased the heart weight/tibia length (HW/TL) ratio, the mean area of cardiomyocytes, and the expression of hypertrophy markers, but significantly decreased the expression of genes involved in fatty acid oxidation. Echocardiographic measurements confirmed hypertrophy development after chronic cold exposure. One week of deacclimation for cold-exposed mice fully reverted the morphological, functional, and gene expression indicators of cardiac hypertrophy. Experiments involving injection of leupeptin at 1 h before sacrifice (to block autophagic flux) indicated that cardiac autophagy was repressed under cold exposure and re-activated during the first 24 h after mice were returned to room temperature. Pharmacological blockage of autophagy for 1 week using chloroquine in mice subjected to deacclimation from cold significantly inhibited the reversion of cardiac hypertrophy. Conclusion: Our data indicate that mice exposed to cold develop a marked cardiac hypertrophy that is reversed after 1 week of deacclimation. We propose that autophagy is a major mechanism underlying the heart remodeling seen in response to cold exposure and its posterior reversion after deacclimation

    Novel insights into the cardio-protective effects of FGF21 in lean and obese rat hearts

    Get PDF
    Aims: Fibroblast growth factor 21 (FGF21) is a hepatic metabolic regulator with pleotropic actions. Its plasma concentrations are increased in obesity and diabetes; states associated with an increased incidence of cardiovascular disease. We therefore investigated the direct effect of FGF21 on cardio-protection in obese and lean hearts in response to ischemia. Methods and Results: FGF21, FGF21-receptor 1 (FGFR1) and beta-Klotho (βKlotho) were expressed in rodent, human hearts and primary rat cardiomyocytes. Cardiac FGF21 was expressed and secreted (real time RT-PCR/western blot and ELISA) in an autocrine-paracrine manner, in response to obesity and hypoxia, involving FGFR1-βKlotho components. Cardiac-FGF21 expression and secretion were increased in response to global ischemia. In contrast βKlotho was reduced in obese hearts. In isolated adult rat cardiomyocytes, FGF21 activated PI3K/Akt (phosphatidylinositol 3-kinase/Akt), ERK1/2(extracellular signal-regulated kinase) and AMPK (AMP-activated protein kinase) pathways. In Langendorff perfused rat [adult male wild-type wistar] hearts, FGF21 administration induced significant cardio-protection and restoration of function following global ischemia. Inhibition of PI3K/Akt, AMPK, ERK1/2 and ROR-α (retinoic-acid receptor alpha) pathway led to significant decrease of FGF21 induced cardio-protection and restoration of cardiac function in response to global ischemia. More importantly, this cardio-protective response induced by FGF21 was reduced in obesity, although the cardiac expression profiles and circulating FGF21 levels were increased. Conclusion: In an ex vivo Langendorff system, we show that FGF21 induced cardiac protection and restoration of cardiac function involving autocrine-paracrine pathways, with reduced effect in obesity. Collectively, our findings provide novel insights into FGF21-induced cardiac effects in obesity and ischemia

    Differential Regulation of the PGC Family of Genes in a Mouse Model of Staphylococcus aureus Sepsis

    Get PDF
    The PGC family of transcriptional co-activators (PGC-1α [Ppargc1a], PGC-1β [Ppargc1b], and PRC [Pprc]) coordinates the upregulation of mitochondrial biogenesis, and Ppargc1a is known to be activated in response to mitochondrial damage in sepsis. Therefore, we postulated that the PGC family is regulated by the innate immune system. We investigated whether mitochondrial biogenesis and PGC gene expression are disrupted in an established model of Staphylococcus aureus sepsis both in mice with impaired innate immune function (TLR2−/− and TLR4−/−) and in wild-type controls. We found an early up-regulation of Ppargc1a and Ppargc1b post-infection (at 6 h) in WT mice, but the expression of both genes was concordantly dysregulated in TLR2−/− mice (no increase at 6 h) and in TLR4−/− mice (amplified at 6 h). However, the third family member, PRC, was regulated differently, and its expression increased significantly at 24 h in all three mouse strains (WT, TLR2−/−, and TLR4−/−). In silico analyses showed that Ppargc1a and Ppargc1b share binding sites for microRNA mmu-mir-202-3p. Thus, miRNA-mediated post-transcriptional mRNA degradation could account for the failure to increase the expression of both genes in TLR2−/− mice. The expression of mmu-mir-202-3p was measured by real-time PCR and found to be significantly increased in TLR2−/− but not in WT or TLR4−/− mice. In addition, it was found that mir-202-3p functionally decreases Ppargc1a mRNA in vitro. Thus, both innate immune signaling through the TLRs and mir-202-3p-mediated mRNA degradation are implicated in the co-regulation of Ppargc1a and Ppargc1b during inflammation. Moreover, the identification of mir-202-3p as a potential factor for Ppargc1a and Ppargc1b repression in acute inflammation may open new avenues for mitochondrial research and, potentially, therapy

    Requisits higienicosanitaris en l’elaboració de formatges a partir de llet crua

    Get PDF
    Control oficial; Formatges; Llet crua; APPCCControl oficial; Quesos; Leche cruda; APPCCOfficial control; Cheeses; Raw milk; HACCPL’objectiu d’aquesta Comunitat de Pràctica (CoP ) és recollir uns criteris i elaborar un document de requisits sanitaris que cal seguir en la gestió del risc de l’elaboració dels formatges fets amb llet crua amb un període de maduració inferior a 60 dies. Els operadors econòmics han de garantir la seguretat dels seus productes i han d’aplicar programes d’autocontrol en matèria de seguretat alimentària, basats en l’anàlisi de perills i punts de control crític (APPCC), per garantir la innocuïtat dels seus productes. Les autoritats sanitàries són responsables de vetllar, mitjançant la vigilància i el control oficials, perquè aquests productes respectin les normes de seguretat alimentària. En el cas dels formatges elaborats amb llet crua, se’ns plantegen diversos problemes respecte a la seguretat alimentària, i comprovem que, cada cop més, els petits productors elaboren formatges amb llet crua amb períodes de maduració inferiors als 60 dies, que després són venuts en fires, mercats locals o altres establiments alimentaris i fins i tot exportats. El marc normatiu (Reglament (CE) 853/2004)1 recull l’elaboració d’aquests tipus de formatges sempre que es reuneixin uns requisits sanitaris específics, cosa que fins que no va entrar en vigor havia estat prohibida per la normativa espanyola (Reial decret 1679/1994). Atesa la complexitat i el risc que aquests productes poden suposar, tant els inspectors de l’ASPCAT com els inspectors de l’àmbit local es preocupen pels criteris tecnològics i d’autocontrols microbiològics que s’han de complir en aquests establiments per garantir la seguretat alimentària.El objetivo de esta Comunidad de Práctica (CoP) es recoger unos criterios y elaborar un documento de requisitos sanitarios a seguir en la gestión del riesgo de la elaboración de los quesos hechos con leche cruda con un período de maduración inferior a 60 días . Los operadores económicos deben garantizar la seguridad de sus productos y deben aplicar programas de autocontrol en materia de seguridad alimentaria, basados en el análisis de peligros y puntos de control crítico (APPCC), para garantizar la inocuidad de sus productos. Las autoridades sanitarias son responsables de velar, mediante la vigilancia y control oficiales, para que estos productos respeten las normas de seguridad alimentaria. En el caso de los quesos elaborados con leche cruda, se nos plantean varios problemas respecto a la seguridad alimentaria, y comprobamos que, cada vez más, los pequeños productores elaboran quesos con leche cruda con períodos de maduración inferiores a los 60 días, que después son vendidos en ferias, mercados locales u otros establecimientos alimenticios e incluso exportados. El marco normativo (Reglamento (CE) 853/2004)1 recoge la elaboración de este tipo de quesos siempre que se reúnan unos requisitos sanitarios específicos, algo que hasta que no entró en vigor había sido prohibido por la normativa española (Real decreto 1679/1994). Dada la complejidad y el riesgo que estos productos pueden suponer, tanto los inspectores de la ASPCAT como los inspectores del ámbito local se preocupan por los criterios tecnológicos y de autocontroles microbiológicos que deben cumplirse en estos establecimientos para garantizar la seguridad alimentaria.The objective of this Community of Practice (CoP) is to collect criteria and prepare a document of health requirements to be followed in the management of the risk of the production of cheeses made with raw milk with a maturation period of less than 60 days. Economic operators must guarantee the safety of their products and must apply self-control programs regarding food safety, based on hazard analysis and critical control points (HACCP), to guarantee the safety of their products. Health authorities are responsible for ensuring, through official surveillance and control, that these products respect food safety standards. In the case of cheeses made with raw milk, we face several problems regarding food safety, and we see that, increasingly, small producers make cheeses with raw milk with maturation periods of less than 60 days, which then They are sold at fairs, local markets or other food establishments and even exported. The regulatory framework (Regulation (EC) 853/2004)1 includes the production of this type of cheese as long as specific health requirements are met, something that until it came into force had been prohibited by Spanish regulations (RD 1679/1994). Given the complexity and risk that these products can pose, both ASPCAT inspectors and local inspectors are concerned about the technological and microbiological self-control criteria that must be met in these establishments to guarantee food safety

    Lovastatin Modulates Glycogen Synthase Kinase-3β Pathway and Inhibits Mossy Fiber Sprouting after Pilocarpine-Induced Status Epilepticus

    Get PDF
    This study was undertaken to assay the effect of lovastatin on the glycogen synthase kinase-3 beta (GSK-3β) and collapsin responsive mediator protein-2 (CRMP-2) signaling pathway and mossy fiber sprouting (MFS) in epileptic rats. MFS in the dentate gyrus (DG) is an important feature of temporal lobe epilepsy (TLE) and is highly related to the severity and the frequency of spontaneous recurrent seizures. However, the molecular mechanism of MFS is mostly unknown. GSK-3β and CRMP-2 are the genes responsible for axonal growth and neuronal polarity in the hippocampus, therefore this pathway is a potential target to investigate MFS. Pilocarpine-induced status epilepticus animal model was taken as our researching material. Western blot, histological and electrophysiological techniques were used as the studying tools. The results showed that the expression level of GSK-3β and CRMP-2 were elevated after seizure induction, and the administration of lovastatin reversed this effect and significantly reduced the extent of MFS in both DG and CA3 region in the hippocampus. The alteration of expression level of GSK-3β and CRMP-2 after seizure induction proposes that GSK-3β and CRMP-2 are crucial for MFS and epiletogenesis. The fact that lovastatin reversed the expression level of GSK-3β and CRMP-2 indicated that GSK-3β and CRMP-2 are possible to be a novel mechanism of lovatstain to suppress MFS and revealed a new therapeutic target and researching direction for studying the mechanism of MFS and epileptogenesis

    Identification and validation of the pathways and functions regulated by the orphan nuclear receptor, ROR alpha1, in skeletal muscle

    Get PDF
    The retinoic acid receptor-related orphan receptor (ROR) alpha has been demonstrated to regulate lipid metabolism. We were interested in the RORα1 dependent physiological functions in skeletal muscle. This major mass organ accounts for ∼40% of the total body mass and significant levels of lipid catabolism, glucose disposal and energy expenditure. We utilized the strategy of targeted muscle-specific expression of a truncated (dominant negative) RORα1ΔDE in transgenic mice to investigate RORα1 signaling in this tissue. Expression profiling and pathway analysis indicated that RORα influenced genes involved in: (i) lipid and carbohydrate metabolism, cardiovascular and metabolic disease; (ii) LXR nuclear receptor signaling and (iii) Akt and AMPK signaling. This analysis was validated by quantitative PCR analysis using TaqMan low-density arrays, coupled to statistical analysis (with Empirical Bayes and Benjamini–Hochberg). Moreover, westerns and metabolic profiling were utilized to validate the genes, proteins and pathways (lipogenic, Akt, AMPK and fatty acid oxidation) involved in the regulation of metabolism by RORα1. The identified genes and pathways were in concordance with the demonstration of hyperglycemia, glucose intolerance, attenuated insulin-stimulated phosphorylation of Akt and impaired glucose uptake in the transgenic heterozygous Tg-RORα1ΔDE animals. In conclusion, we propose that RORα1 is involved in regulating the Akt2-AMPK signaling pathways in the context of lipid homeostasis in skeletal muscle

    The Interplay between NF-kappaB and E2F1 Coordinately Regulates Inflammation and Metabolism in Human Cardiac Cells

    Get PDF
    Pyruvate dehydrogenase kinase 4 (PDK4) inhibition by nuclear factor-κB (NF-κB) is related to a shift towards increased glycolysis during cardiac pathological processes such as cardiac hypertrophy and heart failure. The transcription factors estrogen-related receptor-α (ERRα) and peroxisome proliferator-activated receptor (PPAR) regulate PDK4 expression through the potent transcriptional coactivator PPARγ coactivator-1α (PGC-1α). NF-κB activation in AC16 cardiac cells inhibit ERRα and PPARβ/δ transcriptional activity, resulting in reduced PGC-1α and PDK4 expression, and an enhanced glucose oxidation rate. However, addition of the NF-κB inhibitor parthenolide to these cells prevents the downregulation of PDK4 expression but not ERRα and PPARβ/δ DNA binding activity, thus suggesting that additional transcription factors are regulating PDK4. Interestingly, a recent study has demonstrated that the transcription factor E2F1, which is crucial for cell cycle control, may regulate PDK4 expression. Given that NF-κB may antagonize the transcriptional activity of E2F1 in cardiac myocytes, we sought to study whether inflammatory processes driven by NF-κB can downregulate PDK4 expression in human cardiac AC16 cells through E2F1 inhibition. Protein coimmunoprecipitation indicated that PDK4 downregulation entailed enhanced physical interaction between the p65 subunit of NF-κB and E2F1. Chromatin immunoprecipitation analyses demonstrated that p65 translocation into the nucleus prevented the recruitment of E2F1 to the PDK4 promoter and its subsequent E2F1-dependent gene transcription. Interestingly, the NF-κB inhibitor parthenolide prevented the inhibition of E2F1, while E2F1 overexpression reduced interleukin expression in stimulated cardiac cells. Based on these findings, we propose that NF-κB acts as a molecular switch that regulates E2F1-dependent PDK4 gene transcription

    An immunohistochemical perspective of PPARβ and one of its putative targets PDK1 in normal ovaries, benign and malignant ovarian tumours

    Get PDF
    Peroxisome proliferator-activated receptor β (PPARβ) is a member of the nuclear hormone receptor family and is a ligand-activated transcription factor with few known molecular targets including 3-phosphoinositide-dependent protein kinase 1(PDK1). In view of the association of PPARβ and PDK1 with cancer, we have examined the expression of PPARβ and PDK1 in normal ovaries and different histological grades of ovarian tumours. Normal ovaries, benign, borderline, grades 1, 2 and 3 ovarian tumours of serous, muciuous, endometrioid, clear cell and mixed subtypes were analysed by immunohistochemistry for PPARβ and PDK1 expression. All normal ovarian tissues, benign, borderline and grade 1 tumours showed PPARβ staining localised in the epithelium and stroma. Staining was predominantly nuclear, but some degree of cytoplasmic staining was also evident. Approximately 20% of grades 2 and 3 tumours lacked PPARβ staining, whereas the rest displayed some degree of nuclear and cytoplasmic staining of the scattered epithelium and stroma. The extent of epithelial and stromal PPARβ staining was significantly different among the normal and the histological grades of tumours (χ2=59.25, d.f.=25, P<0.001; χ2=64.48, d.f.=25, P<0.001). Significantly different staining of PPARβ was observed in the epithelium and stroma of benign and borderline tumours compared with grades 1, 2 and 3 tumours (χ2=11.28, d.f.=4, P<0.05; χ2=16.15, d.f.=4, P<0.005). In contrast, PDK1 immunostaining was absent in 9 out of 10 normal ovaries. Weak staining for PDK1 was observed in one normal ovary and 40% of benign ovarian tumours. All borderline and malignant ovarian tumours showed positive cytoplasmic and membrane PDK1 staining. Staining of PDK1 was confined to the epithelium and the blood vessels, and no apparent staining of the stroma was evident. Significantly different PDK1 staining was observed between the benign/borderline and malignant ovarian tumours (χ2=22.45, d.f.=5, P<0.001). In some borderline and high-grade tumours, staining of the reactive stroma was also evident. Our results suggest that unlike the colon, the endometrial, head and neck carcinomas, overexpression of PPARβ does not occur in ovarian tumours. However, overexpression of PDK1 was evident in borderline and low- to high-grade ovarian tumours and is consistent with its known role in tumorigenesis

    AMP-Activated Protein Kinase-Regulated Activation of the PGC-1α Promoter in Skeletal Muscle Cells

    Get PDF
    The mechanisms by which PGC-1α gene expression is controlled in skeletal muscle remains largely undefined. Thus, we sought to investigate the transcriptional regulation of PGC-1α using AICAR, an activator of AMPK, that is known to increase PGC-1α expression. A 2.2 kb fragment of the human PGC-1α promoter was cloned and sequence analysis revealed that this TATA-less sequence houses putative consensus sites including a GC-box, a CRE, several IRSs, a SRE, binding sites for GATA, MEF2, p 53, NF-κB, and EBox binding proteins. AMPK activation for 24 hours increased PGC-1α promoter activity with concomitant increases in mRNA expression. The effect of AICAR on transcriptional activation was mediated by an overlapping GATA/EBox binding site at −495 within the PGC-1α promoter based on gel shift analyses that revealed increases in GATA/EBox DNA binding. Mutation of the EBox within the GATA/EBox binding site in the promoter reduced basal promoter activity and completely abolished the AICAR effect. Supershift analyses identified USF-1 as a DNA binding transcription factor potentially involved in regulating PGC-1α promoter activity, which was confirmed in vivo by ChIP. Overexpression of either GATA-4 or USF-1 alone increased the p851 PGC-1α promoter activity by 1.7- and 2.0-fold respectively, while co-expression of GATA-4 and USF-1 led to an additive increase in PGC-1α promoter activity. The USF-1-mediated increase in PGC-1α promoter activation led to similar increases at the mRNA level. Our data identify a novel AMPK-mediated regulatory pathway that regulates PGC-1α gene expression. This could represent a potential therapeutic target to control PGC-1α expression in skeletal muscle
    corecore