18 research outputs found

    Π-Anion and Hydrogen Bonding Interactions : a new tool for Molecular Recognition and Catalysis

    No full text
    Les anions sont prĂ©sents dans de nombreux domaines tels que la biologie, la mĂ©decine, la catalyse ou encore l’environnement. Par exemple, l’anion chlorure joue un rĂŽle important dans les canalopathies telles que la mucoviscidose. DĂšs lors, la conception de nouveaux rĂ©cepteurs d’anions est un dĂ©fi en chimie organique moderne. L'Ă©laboration de telles molĂ©cules organiques s'appuie sur la formation de diffĂ©rentes interactions non-covalentes (liaisons hydrogĂšne, interactions π-anion, liaisons halogĂšne) et sur le concept de reconnaissance molĂ©culaire. Ce dernier rĂ©sulte de l’association spĂ©cifique entre un rĂ©cepteur ou molĂ©cule hĂŽte et un substrat (ou molĂ©cule invitĂ©e) conduisant Ă  un complexe molĂ©culaire. Elle implique une complĂ©mentaritĂ© de formes, de charges et de tailles entre le rĂ©cepteur et le substrat. En dĂ©pit d'efforts continus de la communautĂ© scientifique, la prĂ©diction, la comprĂ©hension de leur mĂ©canisme d'action, la dĂ©termination de la nature de l'entitĂ© tridimensionnelle mise en jeu et les applications potentielles de ces complexes molĂ©culaires restent des objectifs Ă  atteindre. La conception mĂȘme de ces ligands/rĂ©cepteurs d'anions est cruciale. En effet, ces interactions non-covalentes contribuent individuellement Ă  la structuration et aux propriĂ©tĂ©s d'Ă©difices molĂ©culaires tridimensionnels complexes, mais associĂ©es au sein d'une mĂȘme plateforme molĂ©culaire polyfonctionnelle, une combinaison de plusieurs interactions non-covalentes est susceptible de gĂ©nĂ©rer des phĂ©nomĂšnes de coopĂ©rativitĂ©/anti-coopĂ©rativitĂ©. Ce projet s’est donc orientĂ© vers le dĂ©veloppement de nouveaux designs molĂ©culaires combinant deux types de fragments : les dĂ©rivĂ©s d’urĂ©es capables de gĂ©nĂ©rer des liaisons hydrogĂšne et des fragments fluorescents aptes Ă  gĂ©nĂ©rer des interactions π-anion. Une approche systĂ©matique basĂ©e sur un volet thĂ©orique (modĂ©lisation molĂ©culaire) et une combinaison de mĂ©thodes expĂ©rimentales (RMN, spectromĂ©trie de masse, spectroscopies UV-Visible, fluorescence et dĂ©clins) a permis d’évaluer les propriĂ©tĂ©s de reconnaissance molĂ©culaire sur un panel d’anions de taille et de gĂ©omĂ©tries diffĂ©rentes. Ce manuscrit dĂ©bute donc par une revue de la littĂ©rature, suivie de quatre volets successifs examinant des variations structurales du rĂ©cepteur et de ses diffĂ©rents Ă©lĂ©ments constitutifs. Ces variations permettant la modulation d’une multitude de paramĂštres : effets Ă©lectroniques, balance rigiditĂ©/flexibilitĂ©, force et directionnalitĂ© des interactions non-covalentes ou encore effets de coopĂ©rativitĂ©, par exemple. Dans un dernier temps, l’introduction d’élĂ©ments porteurs de l’information chirale dans les designs les plus prometteurs a Ă©tĂ© rĂ©alisĂ©e ainsi que quelques essais prĂ©liminaires en catalyse par piĂ©geage d’anions.Anions are widely spread in several areas such as biology, medicine, catalysis or environment. For instance, chloride anion plays a key role in channelopathies such as the cystic fibrosis. Henceforth, the development of new anion receptors is a challenge in modern organic chemistry. The elaboration of such molecules is based on the formation of different non-covalent interactions (hydrogen bonds, anion-π interactions, halogen bonds) and on the molecular recognition concept. This concept is based on the specific association between a receptor (host molecule) and a substrate (guest molecule), giving rise to a molecular complex. It involves a complementarity of shapes, charges and sizes between the host and the guest. Despite continuous efforts from the scientific community, the prediction, the understanding of mechanistic aspects, the determination of the nature of the three-dimensional entity involved and potential applications of these molecular complexes remain goals to achieve. The conception of those ligands/anion receptors is therefore crucial. Indeed, these non-covalent interactions individually contribute to the structuration and properties of complex three-dimensional molecular structures, but associated within a single polyfunctional molecular platform, a combination of non-covalent interactions is susceptible to generate cooperativity effects. This project is therefore oriented towards the development of new molecular designs combining two types of fragments : urea derivatives able to generate hydrogen bonds and fluorescent fragments able to generative anion-π interaction. A systematic study combining both a theoretical approach (molecular modelling) and a combination of experimental methods (NMR, mass spectrometry, UV-Visible, fluorescence and decay spectroscopies) enables to assess molecular recognition properties on a panel of anions with different shapes and sizes. This manuscript starts from a literature review, followed by four successive sections describing evolutions of the receptor design and constitutive structural elements involved. These variations allow the modulation of a lot of parameters : electronic effects, rigidity/flexibility balance, strength and directionality of non-covalent interactions or cooperativity effects, for instance. Finally, the introduction of chiral structural elements in most promising receptors as well as preliminary anion binding catalysis trials are described

    Interactions π−anion et liaisons hydrogĂšne : un outil au service de la reconnaissance molĂ©culaire et de la catalyse

    No full text
    Anions are widely spread in several areas such as biology, medicine, catalysis or environment. For instance, chloride anion plays a key role in channelopathies such as the cystic fibrosis. Henceforth, the development of new anion receptors is a challenge in modern organic chemistry. The elaboration of such molecules is based on the formation of different non-covalent interactions (hydrogen bonds, anion-π interactions, halogen bonds) and on the molecular recognition concept. This concept is based on the specific association between a receptor (host molecule) and a substrate (guest molecule), giving rise to a molecular complex. It involves a complementarity of shapes, charges and sizes between the host and the guest. Despite continuous efforts from the scientific community, the prediction, the understanding of mechanistic aspects, the determination of the nature of the three-dimensional entity involved and potential applications of these molecular complexes remain goals to achieve. The conception of those ligands/anion receptors is therefore crucial. Indeed, these non-covalent interactions individually contribute to the structuration and properties of complex three-dimensional molecular structures, but associated within a single polyfunctional molecular platform, a combination of non-covalent interactions is susceptible to generate cooperativity effects. This project is therefore oriented towards the development of new molecular designs combining two types of fragments : urea derivatives able to generate hydrogen bonds and fluorescent fragments able to generative anion-π interaction. A systematic study combining both a theoretical approach (molecular modelling) and a combination of experimental methods (NMR, mass spectrometry, UV-Visible, fluorescence and decay spectroscopies) enables to assess molecular recognition properties on a panel of anions with different shapes and sizes. This manuscript starts from a literature review, followed by four successive sections describing evolutions of the receptor design and constitutive structural elements involved. These variations allow the modulation of a lot of parameters : electronic effects, rigidity/flexibility balance, strength and directionality of non-covalent interactions or cooperativity effects, for instance. Finally, the introduction of chiral structural elements in most promising receptors as well as preliminary anion binding catalysis trials are described.Les anions sont prĂ©sents dans de nombreux domaines tels que la biologie, la mĂ©decine, la catalyse ou encore l’environnement. Par exemple, l’anion chlorure joue un rĂŽle important dans les canalopathies telles que la mucoviscidose. DĂšs lors, la conception de nouveaux rĂ©cepteurs d’anions est un dĂ©fi en chimie organique moderne. L'Ă©laboration de telles molĂ©cules organiques s'appuie sur la formation de diffĂ©rentes interactions non-covalentes (liaisons hydrogĂšne, interactions π-anion, liaisons halogĂšne) et sur le concept de reconnaissance molĂ©culaire. Ce dernier rĂ©sulte de l’association spĂ©cifique entre un rĂ©cepteur ou molĂ©cule hĂŽte et un substrat (ou molĂ©cule invitĂ©e) conduisant Ă  un complexe molĂ©culaire. Elle implique une complĂ©mentaritĂ© de formes, de charges et de tailles entre le rĂ©cepteur et le substrat. En dĂ©pit d'efforts continus de la communautĂ© scientifique, la prĂ©diction, la comprĂ©hension de leur mĂ©canisme d'action, la dĂ©termination de la nature de l'entitĂ© tridimensionnelle mise en jeu et les applications potentielles de ces complexes molĂ©culaires restent des objectifs Ă  atteindre. La conception mĂȘme de ces ligands/rĂ©cepteurs d'anions est cruciale. En effet, ces interactions non-covalentes contribuent individuellement Ă  la structuration et aux propriĂ©tĂ©s d'Ă©difices molĂ©culaires tridimensionnels complexes, mais associĂ©es au sein d'une mĂȘme plateforme molĂ©culaire polyfonctionnelle, une combinaison de plusieurs interactions non-covalentes est susceptible de gĂ©nĂ©rer des phĂ©nomĂšnes de coopĂ©rativitĂ©/anti-coopĂ©rativitĂ©. Ce projet s’est donc orientĂ© vers le dĂ©veloppement de nouveaux designs molĂ©culaires combinant deux types de fragments : les dĂ©rivĂ©s d’urĂ©es capables de gĂ©nĂ©rer des liaisons hydrogĂšne et des fragments fluorescents aptes Ă  gĂ©nĂ©rer des interactions π-anion. Une approche systĂ©matique basĂ©e sur un volet thĂ©orique (modĂ©lisation molĂ©culaire) et une combinaison de mĂ©thodes expĂ©rimentales (RMN, spectromĂ©trie de masse, spectroscopies UV-Visible, fluorescence et dĂ©clins) a permis d’évaluer les propriĂ©tĂ©s de reconnaissance molĂ©culaire sur un panel d’anions de taille et de gĂ©omĂ©tries diffĂ©rentes. Ce manuscrit dĂ©bute donc par une revue de la littĂ©rature, suivie de quatre volets successifs examinant des variations structurales du rĂ©cepteur et de ses diffĂ©rents Ă©lĂ©ments constitutifs. Ces variations permettant la modulation d’une multitude de paramĂštres : effets Ă©lectroniques, balance rigiditĂ©/flexibilitĂ©, force et directionnalitĂ© des interactions non-covalentes ou encore effets de coopĂ©rativitĂ©, par exemple. Dans un dernier temps, l’introduction d’élĂ©ments porteurs de l’information chirale dans les designs les plus prometteurs a Ă©tĂ© rĂ©alisĂ©e ainsi que quelques essais prĂ©liminaires en catalyse par piĂ©geage d’anions

    Interactions π−anion et liaisons hydrogĂšne : un outil au service de la reconnaissance molĂ©culaire et de la catalyse

    No full text
    Anions are widely spread in several areas such as biology, medicine, catalysis or environment. For instance, chloride anion plays a key role in channelopathies such as the cystic fibrosis. Henceforth, the development of new anion receptors is a challenge in modern organic chemistry. The elaboration of such molecules is based on the formation of different non-covalent interactions (hydrogen bonds, anion-π interactions, halogen bonds) and on the molecular recognition concept. This concept is based on the specific association between a receptor (host molecule) and a substrate (guest molecule), giving rise to a molecular complex. It involves a complementarity of shapes, charges and sizes between the host and the guest. Despite continuous efforts from the scientific community, the prediction, the understanding of mechanistic aspects, the determination of the nature of the three-dimensional entity involved and potential applications of these molecular complexes remain goals to achieve. The conception of those ligands/anion receptors is therefore crucial. Indeed, these non-covalent interactions individually contribute to the structuration and properties of complex three-dimensional molecular structures, but associated within a single polyfunctional molecular platform, a combination of non-covalent interactions is susceptible to generate cooperativity effects. This project is therefore oriented towards the development of new molecular designs combining two types of fragments : urea derivatives able to generate hydrogen bonds and fluorescent fragments able to generative anion-π interaction. A systematic study combining both a theoretical approach (molecular modelling) and a combination of experimental methods (NMR, mass spectrometry, UV-Visible, fluorescence and decay spectroscopies) enables to assess molecular recognition properties on a panel of anions with different shapes and sizes. This manuscript starts from a literature review, followed by four successive sections describing evolutions of the receptor design and constitutive structural elements involved. These variations allow the modulation of a lot of parameters : electronic effects, rigidity/flexibility balance, strength and directionality of non-covalent interactions or cooperativity effects, for instance. Finally, the introduction of chiral structural elements in most promising receptors as well as preliminary anion binding catalysis trials are described.Les anions sont prĂ©sents dans de nombreux domaines tels que la biologie, la mĂ©decine, la catalyse ou encore l’environnement. Par exemple, l’anion chlorure joue un rĂŽle important dans les canalopathies telles que la mucoviscidose. DĂšs lors, la conception de nouveaux rĂ©cepteurs d’anions est un dĂ©fi en chimie organique moderne. L'Ă©laboration de telles molĂ©cules organiques s'appuie sur la formation de diffĂ©rentes interactions non-covalentes (liaisons hydrogĂšne, interactions π-anion, liaisons halogĂšne) et sur le concept de reconnaissance molĂ©culaire. Ce dernier rĂ©sulte de l’association spĂ©cifique entre un rĂ©cepteur ou molĂ©cule hĂŽte et un substrat (ou molĂ©cule invitĂ©e) conduisant Ă  un complexe molĂ©culaire. Elle implique une complĂ©mentaritĂ© de formes, de charges et de tailles entre le rĂ©cepteur et le substrat. En dĂ©pit d'efforts continus de la communautĂ© scientifique, la prĂ©diction, la comprĂ©hension de leur mĂ©canisme d'action, la dĂ©termination de la nature de l'entitĂ© tridimensionnelle mise en jeu et les applications potentielles de ces complexes molĂ©culaires restent des objectifs Ă  atteindre. La conception mĂȘme de ces ligands/rĂ©cepteurs d'anions est cruciale. En effet, ces interactions non-covalentes contribuent individuellement Ă  la structuration et aux propriĂ©tĂ©s d'Ă©difices molĂ©culaires tridimensionnels complexes, mais associĂ©es au sein d'une mĂȘme plateforme molĂ©culaire polyfonctionnelle, une combinaison de plusieurs interactions non-covalentes est susceptible de gĂ©nĂ©rer des phĂ©nomĂšnes de coopĂ©rativitĂ©/anti-coopĂ©rativitĂ©. Ce projet s’est donc orientĂ© vers le dĂ©veloppement de nouveaux designs molĂ©culaires combinant deux types de fragments : les dĂ©rivĂ©s d’urĂ©es capables de gĂ©nĂ©rer des liaisons hydrogĂšne et des fragments fluorescents aptes Ă  gĂ©nĂ©rer des interactions π-anion. Une approche systĂ©matique basĂ©e sur un volet thĂ©orique (modĂ©lisation molĂ©culaire) et une combinaison de mĂ©thodes expĂ©rimentales (RMN, spectromĂ©trie de masse, spectroscopies UV-Visible, fluorescence et dĂ©clins) a permis d’évaluer les propriĂ©tĂ©s de reconnaissance molĂ©culaire sur un panel d’anions de taille et de gĂ©omĂ©tries diffĂ©rentes. Ce manuscrit dĂ©bute donc par une revue de la littĂ©rature, suivie de quatre volets successifs examinant des variations structurales du rĂ©cepteur et de ses diffĂ©rents Ă©lĂ©ments constitutifs. Ces variations permettant la modulation d’une multitude de paramĂštres : effets Ă©lectroniques, balance rigiditĂ©/flexibilitĂ©, force et directionnalitĂ© des interactions non-covalentes ou encore effets de coopĂ©rativitĂ©, par exemple. Dans un dernier temps, l’introduction d’élĂ©ments porteurs de l’information chirale dans les designs les plus prometteurs a Ă©tĂ© rĂ©alisĂ©e ainsi que quelques essais prĂ©liminaires en catalyse par piĂ©geage d’anions

    Fiche catalyse n°55 : La catalyse par piégeage d'anions : une catalyse bioinspirée

    No full text
    International audienc

    Anion‐π Interaction for Molecular Recognition of Anions: Focus on Cooperativity with Hydrogen Bonding

    No full text
    International audienceAnion recognition represents an intense area of research in supramolecular chemistry. The last two decades have been marked by spectacular advances in the design of new anion receptors. Moreover, the development of approaches combining experimental and theoretical studies has proved to be particularly relevant, allowing a better understanding and rationalization of the phenomena involved in anion complexation processes. In this context, the combination of weak interactions within the same receptor and their synergistic effects, called cooperativity, has attracted increasing interest within the scientific community. This review focuses on the combination of anion-π and hydrogen bonds and the emerging concept of cooperativity. The most relevant anion-π donor families are presented. The concept of cooperativity is illustrated using the most recent examples present in current literature

    Recent advances in the chemistry of 1,2,4-triazoles: Synthesis, reactivity and biological activities

    No full text
    International audience1,2,4-Triazoles are important heterocyclic motifs that are widely found in molecular architectures with medicinal and pharmaceutical properties. Considering the importance of these scaffolds, many works have been published over the last few decades. This review provides a focus on the synthetic approaches towards 1,2,4-triazole derivatives from common precursors such as amidines, imidates, amidrazones, aryldiazoniums and hydrazones over the last decade. This review also aims to provide an overview of triazole derivatives biological properties within the last two years

    Multi-approach strategy to probe the interactions between anions and new classes of molecular receptors

    No full text
    The anion distribution across cell membranes is a major element governing biological processes in the human body. This is ensured by ion channels, membrane proteins with the capacity to selectively regulate ion flows. Disruption of these electrophysiological ion transport phenomena can lead to serious pathologies (channelopathies). One example is the deregulation of chloride ion concentration, leading in particular to cystic fibrosis.[1]A new therapeutic strategy for treating channelopathies involves designing molecules that allow ions to be transported across lipid membranes, thereby restoring ionic currents and their physiological functions. [2] In this context, new families of receptors are being developed that combine several low-energy interactions (hydrogen, halogen and pi-anion bonds). A combination of several weak interactions is likely to generate stronger and more selective bonds, thereby modulating existing properties or generating new ones.The aim of the work presented here is to characterize in detail, using a multi-approach experimental strategy, the interaction processes at play between these receptors and a series of target anions. Gas-phase studies can provide valuable information about the interactions established at the molecular level between the anions and the receptors. These will be carried out using mass spectrometry to determine the stoichiometry of the anion/receptor complexes and to obtain structural characterization using tandem mass spectrometry (MSn) to determine the position of the anion on these new structures. This work is complemented by theoretical calculations using DFT (Density Functional Theory). The results obtained in the gas phase are complemented by the characterization of ligand-host complexes in solution [3], by NMR titrations and by UV/vis and fluorescence spectroscopy experiments.References[1] S.M. Rowe et al. N. Engl. J. Med. 2005, 352, 1992-2001.[2] T. Sato et al. J. Biol. Chem. 1998, 273, 21455-21462.[3] R. Plais et al. ChemPhysChem, 2022, e20220052
    corecore