19 research outputs found

    The progress of early phase bone healing using porous granules produced from calcium phosphate cement

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>Bone grafting is a vital component in many surgical procedures to facilitate the repair of bone defects or fusions. Autologous bone has been the gold standard to date in spite of associated donor-site morbidity and the limited amount of available donor bone. The aim of this study was to investigate the progress of bone regeneration and material degradation of calcium phosphate granules (CPG) produced from a calcium phosphate self-setting cement powder compared to the use of autologous bone grafting in the treatment of "critical size defects" on load-bearing long bones of minipigs.</p> <p>Methods</p> <p>A critical size defect in the tibial metaphysis of 16 mini-pigs was filled either with autologous cancellous graft or with micro- and macroporous carbonated, apatic calcium phosphate granules (CPG) produced from a calcium phosphate self-setting cement powder. After 6 weeks, the specimens were assessed by X-ray and histological evaluation. The amount of new bone formation was analysed histomorphometrically.</p> <p>Results</p> <p>The semi-quantitative analysis of the radiological results showed a complete osseous bridging of the defect in three cases for the autograft group. In the same group five animals showed a beginning, but still incomplete bridging of the defect, whereas in the CPG group just two animals developed this. All other animals of the CPG group showed only a still discontinuous new bone formation. Altogether, radiologically a better osseous bridging was observed in the autograft group compared to the CPG group.</p> <p>Histomorphometrical analysis after six weeks of healing revealed that the area of new bone was significantly greater in the autograft group concerning the central area of the defect zone (p < 0.001) as well as the cortical defect zone (p < 0.002). All defects showed new bone formation, but only in the autograft group defects regenerated entirely</p> <p>Conclusions</p> <p>Within the limits of the present study it could be demonstrated that autologous cancellous grafts lead to a significantly better bone regeneration compared to the application of calcium phosphate granules (CPG) produced from a calcium phosphate self-setting cement powder after 6 weeks. In the early phase of bone-healing, the sole application of CPG appears to be inferior to the autologous cancellous grafts in an <it>in vivo </it>critical size defect on load-bearing long bones of mini-pigs.</p

    Platelet autologous growth factors decrease the osteochondral regeneration capability of a collagen-hydroxyapatite scaffold in a sheep model

    Get PDF
    Background: Current research aims to develop innovative approaches to improve chondral and osteochondral regeneration. The objective of this study was to investigate the regenerative potential of platelet-rich plasma (PRP) to enhance the repair process of a collagen-hydroxyapatite scaffold in osteochondral defects in a sheep model. Methods: PRP was added to a new, multi-layer gradient, nanocomposite scaffold that was obtained by nucleating collagen fibrils with hydroxyapatite nanoparticles. Twenty-four osteochondral lesions were created in sheep femoral condyles. The animals were randomised to three treatment groups: scaffold, scaffold loaded with autologous PRP, and empty defect (control). The animals were sacrificed and evaluated six months after surgery. Results: Gross evaluation and histology of the specimens showed good integration of the chondral surface in both treatment groups. Significantly better bone regeneration and cartilage surface reconstruction were observed in the group treated with the scaffold alone. Incomplete bone regeneration and irregular cartilage surface integration were observed in the group treated with the scaffold where PRP was added. In the control group, no bone and cartilage defect healing occurred; defects were filled with fibrous tissue. Quantitative macroscopic and histological score evaluations confirmed the qualitative trends observed. Conclusions: The hydroxyapatite-collagen scaffold enhanced osteochondral lesion repair, but the combination with platelet growth factors did not have an additive effect; on the contrary, PRP administration had a negative effect on the results obtained by disturbing the regenerative process. In the scaffold + PRP group, highly amorphous cartilaginous repair tissue and poorly spatially organised underlying bone tissue were found

    Calcium orthophosphate-based biocomposites and hybrid biomaterials

    Full text link

    Regeneration of the periodontium using enamel matrix derivative in combination with an injectable bone cement

    Get PDF
    Item does not contain fulltextOBJECTIVES: Enamel matrix derivative (EMD) has proven to enhance periodontal regeneration; however, its effect is mainly restricted to the soft periodontal tissues. Therefore, to stimulate not only the soft tissues, but also the hard tissues, in this study EMD is combined with an injectable calcium phosphate cement (CaP; bone graft material). The aim was to evaluate histologically the healing of a macroporous CaP in combination with EMD. MATERIALS AND METHODS: Intrabony, three-wall periodontal defects (2 x 2 x 1.7 mm) were created mesial of the first upper molar in 15 rats (30 defects). Defects were randomly treated according to one of the three following strategies: EMD, calcium phosphate cement and EMD, or left empty. The animals were killed after 12 weeks, and retrieved samples were processed for histology and histomorphometry. RESULTS: Empty defects showed a reparative type of healing without periodontal ligament or bone regeneration. As measured with on a histological grading scale for periodontal regeneration, the experimental groups (EMD and CaP/EMD) scored equally, both threefold higher compared with empty defects. However, most bone formation was measured in the CaP/EMD group; addition of CAP to EMD significantly enhanced bone formation with 50 % compared with EMD alone. CONCLUSIONS: Within the limits of this animal study, the adjunctive use of EMD in combination with an injectable cement, although it did not affect epithelial downgrowth, appeared to be a promising treatment modality for regeneration of bone and ligament tissues in the periodontium. CLINICAL RELEVANCE: The adjunctive use of EMD in combination with an injectable cement appears to be a promising treatment modality for regeneration of the bone and ligament tissues in the periodontium
    corecore