21 research outputs found

    Modeling Brain–Heart Crosstalk Information in Patients with Traumatic Brain Injury

    Get PDF
    Publisher Copyright: © 2021, The Author(s).Background: Traumatic brain injury (TBI) is an extremely heterogeneous and complex pathology that requires the integration of different physiological measurements for the optimal understanding and clinical management of patients. Information derived from intracranial pressure (ICP) monitoring can be coupled with information obtained from heart rate (HR) monitoring to assess the interplay between brain and heart. The goal of our study is to investigate events of simultaneous increases in HR and ICP and their relationship with patient mortality. Methods: In our previous work, we introduced a novel measure of brain–heart interaction termed brain–heart crosstalks (ctnp), as well as two additional brain–heart crosstalks indicators [mutual information (mict) and average edge overlap (ωct)] obtained through a complex network modeling of the brain–heart system. These measures are based on identification of simultaneous increase of HR and ICP. In this article, we investigated the relationship of these novel indicators with respect to mortality in a multicenter TBI cohort, as part of the Collaborative European Neurotrauma Effectiveness Research in TBI high-resolution work package. Results: A total of 226 patients with TBI were included in this cohort. The data set included monitored parameters (ICP and HR), as well as laboratory, demographics, and clinical information. The number of detected brain–heart crosstalks varied (mean 58, standard deviation 57). The Kruskal–Wallis test comparing brain–heart crosstalks measures of survivors and nonsurvivors showed statistically significant differences between the two distributions (p values: 0.02 for mict, 0.005 for ctnp and 0.006 for ωct). An inverse correlation was found, computed using the point biserial correlation technique, between the three new measures and mortality: − 0.13 for ctnp (p value 0.04), − 0.19 for ωct (p value 0.002969) and − 0.09 for mict (p value 0.1396). The measures were then introduced into the logistic regression framework, along with a set of input predictors made of clinical, demographic, computed tomography (CT), and lab variables. The prediction models were obtained by dividing the original cohort into four age groups (16–29, 30–49, 50–65, and 65–85 years of age) to properly treat with the age confounding factor. The best performing models were for age groups 16–29, 50–65, and 65–85, with the deviance of ratio explaining more than 80% in all the three cases. The presence of an inverse relationship between brain–heart crosstalks and mortality was also confirmed. Conclusions: The presence of a negative relationship between mortality and brain–heart crosstalks indicators suggests that a healthy brain–cardiovascular interaction plays a role in TBI.Peer reviewe

    Association between Physiological Signal Complexity and Outcomes in Moderate and Severe Traumatic Brain Injury: A CENTER-TBI Exploratory Analysis of Multi-Scale Entropy.

    Get PDF
    In traumatic brain injury (TBI), preliminary retrospective work on signal entropy suggests an association with global outcome. The goal of this study was to provide multi-center validation of the association between multi-scale entropy (MSE) of cardiovascular and cerebral physiological signals, with six-month outcome. Using the Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) high-resolution intensive care unit (ICU) cohort, we selected patients with a minimum of 72 h of physiological recordings and a documented six-month Glasgow Outcome Scale Extended (GOSE) score. The 10-sec summary data for heart rate (HR), mean arterial pressure (MAP), intracranial pressure (ICP), and pulse amplitude of ICP (AMP) were derived across the first 72 h of data. The MSE complexity index (MSE-Ci) was determined for HR, MAP, ICP, and AMP, with the association between MSE and dichotomized six-month outcomes assessed using Mann-Whitney U testing and logistic regression analysis. A total of 160 patients had a minimum of 72 h of recording and a documented outcome. Decreased HR MSE-Ci (7.3 [interquartile range (IQR) 5.4 to 10.2] vs. 5.1 [IQR 3.1 to 7.0]; p = 0.002), lower ICP MSE-Ci (11.2 [IQR 7.5 to 14.2] vs. 7.3 [IQR 6.1 to 11.0]; p = 0.009), and lower AMP MSE-Ci (10.9 [IQR 8.0 to 13.7] vs. 8.7 [IQR 6.6 to 11.0]; p = 0.022), were associated with death. Similarly, lower HR MSE-Ci (8.0 [IQR 6.2 to 10.9] vs. 6.2 [IQR 3.9 to 8.7]; p = 0.003) and lower ICP MSE-Ci (11.4 [IQR 8.6 to 14.4)] vs. 9.2 [IQR 6.0 to 13.5]), were associated with unfavorable outcome. Logistic regression analysis confirmed that lower HR MSE-Ci and ICP MSE-Ci were associated with death and unfavorable outcome at six months. These findings suggest that a reduction in cardiovascular and cerebrovascular system entropy is associated with worse outcomes. Further work in the field of signal complexity in TBI multi-modal monitoring is required

    CSF Dynamics for Shunt Prognostication and Revision in Normal Pressure Hydrocephalus

    No full text
    Background: Despite the quantitative information derived from testing of the CSF circulation, there is still no consensus on what the best approach could be in defining criteria for shunting and predicting response to CSF diversion in normal pressure hydrocephalus (NPH). Objective: We aimed to review the lessons learned from assessment of CSF dynamics in our center and summarize our findings to date. We have focused on reporting the objective perspective of CSF dynamics testing, without further inferences to individual patient management. Discussion: No single parameter from the CSF infusion study has so far been able to serve as an unquestionable outcome predictor. Resistance to CSF outflow (Rout) is an important biological marker of CSF circulation. It should not, however, be used as a single predictor for improvement after shunting. Testing of CSF dynamics provides information on hydrodynamic properties of the cerebrospinal compartment: the system which is being modified by a shunt. Our experience of nearly 30 years of studying CSF dynamics in patients requiring shunting and/or shunt revision, combined with all the recent progress made in producing evidence on the clinical utility of CSF dynamics, has led to reconsidering the relationship between CSF circulation testing and clinical improvement. Conclusions: Despite many open questions and limitations, testing of CSF dynamics provides unique perspectives for the clinician. We have found value in understanding shunt function and potentially shunt response through shunt testing in vivo. In the absence of infusion tests, further methods that provide a clear description of the pre and post-shunting CSF circulation, and potentially cerebral blood flow, should be developed and adapted to the bed-space

    Red solid line: Patterns of terminal loss of cerebrovascular reactivity at the bedside

    No full text
    Introduction: Continuous monitoring of the pressure reactivity index (PRx) provides an estimation of dynamic cerebral autoregulation (CA) at the bedside in traumatic brain injury (TBI) patients. Visualising the time-trend of PRx with a risk bar chart in ICM + software at the bedside allows for better real-time interpretability of the autoregulation status. When PRx>0.3 is sustained for long periods, typically of at least half an hour, the bar shows a pattern called “red solid line” (RSL). RSL was previously described to precede refractory intracranial hypertension and brain death. Research question: We aimed to describe pathophysiological changes in measured signals/parameters during RSL. Material and methods: Observation of time-trends of PRx, intracranial pressure, cerebral perfusion pressure, brain oxygenation and compensatory reserve of TBI patients with RSL. Results: Three pathophysiological patterns were identified: RSL precedes intracranial hypertension, RSL is preceded by intracranial hypertension, or RSL is preceded by brain hypoperfusion. In all cases, RSL was followed by death and the RSL onset was between 1 h and 1 day before the terminal event. Discussion and conclusion: RSL precedes death in intensive care and could represent a marker for terminal clinical deterioration in TBI patients. These findings warrant further investigations in larger cohorts to characterise pathophysiological mechanisms underlying the RSL pattern and whether RSL has a significant relationship with outcome after TBI
    corecore