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Abstract 

Background: Traumatic brain injury (TBI) is an extremely heterogeneous and complex pathology that requires the 
integration of different physiological measurements for the optimal understanding and clinical management of 
patients. Information derived from intracranial pressure (ICP) monitoring can be coupled with information obtained 
from heart rate (HR) monitoring to assess the interplay between brain and heart. The goal of our study is to investi-
gate events of simultaneous increases in HR and ICP and their relationship with patient mortality..

Methods: In our previous work, we introduced a novel measure of brain–heart interaction termed brain–heart cross-
talks (ctnp), as well as two additional brain–heart crosstalks indicators [mutual information ( mict ) and average edge 
overlap (ωct)] obtained through a complex network modeling of the brain–heart system. These measures are based 
on identification of simultaneous increase of HR and ICP. In this article, we investigated the relationship of these novel 
indicators with respect to mortality in a multicenter TBI cohort, as part of the Collaborative European Neurotrauma 
Effectiveness Research in TBI high-resolution work package.

Results: A total of 226 patients with TBI were included in this cohort. The data set included monitored parameters 
(ICP and HR), as well as laboratory, demographics, and clinical information. The number of detected brain–heart 
crosstalks varied (mean 58, standard deviation 57). The Kruskal–Wallis test comparing brain–heart crosstalks measures 
of survivors and nonsurvivors showed statistically significant differences between the two distributions (p values: 
0.02 for mict , 0.005 for ctnp and 0.006 for ωct). An inverse correlation was found, computed using the point biserial 
correlation technique, between the three new measures and mortality: − 0.13 for ctnp (p value 0.04), − 0.19 for ωct (p 
value 0.002969) and − 0.09 for mict (p value 0.1396). The measures were then introduced into the logistic regression 
framework, along with a set of input predictors made of clinical, demographic, computed tomography (CT), and lab 
variables. The prediction models were obtained by dividing the original cohort into four age groups (16–29, 30–49, 
50–65, and 65–85 years of age) to properly treat with the age confounding factor. The best performing models were 
for age groups 16–29, 50–65, and 65–85, with the deviance of ratio explaining more than 80% in all the three cases. 
The presence of an inverse relationship between brain–heart crosstalks and mortality was also confirmed.

Conclusions: The presence of a negative relationship between mortality and brain–heart crosstalks indicators sug-
gests that a healthy brain–cardiovascular interaction plays a role in TBI.

Keywords: Intracranial pressure, Traumatic brain injury, CENTER-TBI, Raised intracranial pressure, Raised heart rate

Introduction
Severe traumatic brain injury (TBI) is a leading cause of 
death and disability worldwide and across all ages [1], 
and the mortality rate seems to be unchanged over the 
past 25  years [2]. TBI affects 50 to 60 millions of new 
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cases per year, with 2.5 million occurring in Europe, and 
this is the reason why it has been declared a priority for 
public health policy [3]. Efforts should be put into invest-
ments in research and other disciplines, such as clinical 
management and prevention policies. The clinical chal-
lenge is represented by the fact that the patient group 
is extremely heterogeneous and the pathology is highly 
dynamic [4]. Therefore, treatment protocols and predic-
tion models are difficult to assess.

The critical care management in the acute phase is 
focused on reducing the probability and impact of sec-
ondary insults, which develop over time as a consequence 
of raised intracranial pressure (ICP) and/or reduced cer-
ebral perfusion pressure, among other mechanisms [4]. 
Therefore, continuous ICP monitoring is recommended 
by international guidelines as a standard of care in all 
surviving patients with severe TBI to provide informa-
tion for ICP-directed therapy [5, 6].

Along with ICP, a great deal of neuromonitoring tech-
niques and imaging modalities can be used to improve 
the understanding of intracranial pathophysiology, 
which, as mentioned before, is highly heterogeneous and 
dynamic [4]. Ultimately, more precise targets for thera-
pies could be suggested with this integrated approach. In 
this perspective, the interaction between the brain and 
other organs has been suggested as one of the mecha-
nisms that could potentially explain the complexity of 
this pathology.

In particular, much attention has been given in recent 
years to the study of interactions existing between the 
brain and heart [7–9]. The dynamical interplay between 
the two organs is thought to ensure physiological func-
tions and to be involved in pathological conditions, 
too [7]. For example, in the work by Valenza et  al. [7], 
the authors describe episodes of paroxysmal sympa-
thetic hyperactivity, which often happen when there is 
a severe axonal injury. In the work by Valenza et al. [7], 
the authors describe paroxysmal sympathetic hyperac-
tivity in the postresuscitation syndromes after serious 
anoxic-ischemic brain insults. An interesting pattern 
of frequency of these paroxysms has been noticed, as 
described in detail in the work by Valenza et al. [7]. These 
observations show the importance that the brain–heart 
coupling has in pathological events. As a consequence, 
efforts have been made toward exploring analytical 
methodologies that could tackle this phenomenon, with 
the final goal of developing metrics describing the brain–
heart interaction [8, 10].

Nevertheless, this area is still wide open for investiga-
tion, particularly in TBI. In the work by Gao et al. [9], the 
authors presented an interesting analysis of interaction 
between brain and heart measures, showing the presence 
of interaction and Granger causality between ICP, mean 

arterial pressure and heart rate (HR). In our previous 
studies, we derived an HR–ICP measure that we denomi-
nated “brain–heart crosstalks,” defined as transient eleva-
tions of ICP and HR that occur simultaneously [11]. In 
that work, we presented multiple novelties. For the first 
time, to the best of our knowledge, the measure of brain–
heart crosstalks was defined. Moreover, we presented a 
novel sliding window method to detect the presence of 
these events. We studied the crosstalks defined as so in a 
pediatric population and subsequently in a single-center 
study with an adult cohort [12], where we also conducted 
a pilot analysis of the relationship of our novel interaction 
metric with mortality.

In a further work, we modeled the coupled HR–ICP 
system as a multilayer network [13] that can be imag-
ined as a framework in which different channels of the 
same overall modeled structure are included [14]. In this 
framework, each channel is represented by a layer and 
each node can maintain different neighbors and charac-
teristics across different domains. In recent years, multi-
layer networks have been fruitfully applied to a variety of 
fields such as, for example politics, medicine, economics, 
social interaction, and time series [14]. Its strength is the 
capability of modeling relationships across variables (i.e., 
layers), and therefore their interaction and integration. In 
our past work [13], to the best of our knowledge, we used 
for the first time a multilayer network approach to model 
the relationship between ICP and HR during brain–heart 
crosstalks events.

In this work, we aimed to integrate several brain–
heart crosstalks measures and examine their role in the 
context of mortality prediction models, also taking into 
account clinical, demographics, and monitored features 
that collectively reflect the severity of primary injury. 
For this purpose, we used the Collaborative European 
Neurotrauma Effectiveness Research in TBI (CENTER-
TBI) high-resolution intensive care unit (ICU) cohort of 
patients with TBI [15, 16]. Our main hypothesis was that 
the integrated brain–heart crosstalk measures are statis-
tically related to outcome in patients with TBI.

Methods
Material
The material used in the present work included data col-
lected in 226 patients with TBI as part of the high-resolu-
tion CENTER-TBI cohort [15, 16]  . This subset consists 
of patients treated with no external ventricular drain. In 
the cohort analyzed, 50 patients died. The patient out-
come was recorded at 6  months after injury. In Table  1 
we present the variables we used as input features. 
Patients were recruited prospectively between the begin-
ning of 2015 and the end of 2017 from 21 centers across 
Europe. All patients were admitted to the ICU for their 
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TBI during the course of the study, with high-frequency 
digital signals recorded from their ICU monitors during 
the course of their ICU stay.

All the patients had invasive ICP monitoring according 
to the Brain Trauma Foundation guidelines [6].

ICP was acquired using an intraparenchymal strain 
gauge probe (Codman ICP MicroSensor; Codman & 
Shurtleff Inc., Raynham, MA) or parenchymal fiber optic 
pressure sensor (Camino ICP Monitor, Integra Life Sci-
ences, Plainsboro, NJ, US). Arterial blood pressure was 
obtained through either radial or femoral arterial lines 
connected to pressure transducers (Baxter Healthcare 
Corp. CardioVascular Group, Irvine, CA).

All signals were recorded using digital data transfer 
or digitized via an A/D converter (DT9801; Data Trans-
lation, Marlboro, MA), where appropriate, sampled at 
frequency of 100  Hz or higher, using the ICM + soft-
ware (Cambridge Enterprise Ltd., Cambridge, UK) or 
Moberg CNS Monitor (Moberg Research Inc., Ambler, 
PA, USA) or a combination of both [17]. Signal artifacts 
were removed using both manual and with automated 
methods. Post-acquisition processing was conducted 
using ICM + (https:// icmpl us. neuro surg. cam. ac. uk). HR 
was determined by calculating the Fourier transform 
and finding the fundamental frequency of the arterial 
blood pressure waveforms over a 10-s window, updated 
every 10  s. 10-s moving average filter was applied. For 
each patient, we considered the whole monitored period 
available that corresponds to the whole duration of ICP 
monitoring, with initiation of recording within 24  h of 
the injury.

Low resolution data, such as demographic charac-
teristics, admission, and injury related variables, were 
retrieved as per version 2.0 of the CENTER-TBI data-
base. In Table 2, we present the summary of the variables 

describing the dataset used in the present work compar-
ing distributions between the survivors and nonsurvivors.

Methods
Brain–Heart Crosstalks Detection and Analysis
In our own previous work [11], we proposed an algo-
rithm to detect the presence of brain–heart crosstalks 
given two time series of ICP and HR monitored in 
patients with TBI.

Briefly, the algorithm is based upon a sliding window 
approach. A window of 10 min of observations is consid-
ered jointly in HR and ICP. If a simultaneous increase in 
HR and ICP, of at least 20% with respect to the minimum 
value of the window frame, followed by a subsequent 
decrease in both, is detected, then a brain–heart cross-
talk is counted. Such measure was defined to facilitate 
the study of patterns of interaction between HR and ICP 
and used as a proxy of brain and heart interaction. Full 
details of the algorithm can be found in [11]. In the pre-
sent study we applied our own algorithm just described, 
to detect the total number of brain–heart crosstalks for 
adult patients with TBI.

Since the length of observations varied for each patient 
(depending on various factors, for instance the duration 
of hospitalization), the raw number of detected brain–
heart crosstalks was normalized by the total length of the 
analyzed time series (ctnp). Figure 1 shows an example of 
brain–heart crosstalk, with the event marked by the blue 
rectangle.

In our later work [13], the behavior of ICP and HR time 
series, during brain–heart crosstalks events, was further 
investigated using multilayer network modeling. In par-
ticular, the system ICP-HR was modeled as a multiplex 
network, where each layer represents one of the time 
series. The conversion between time series and graphs 

Table 1 Low resolution variables used as input features

In the table the demographic, imaging, and admission variables retrieved as per version 2.0 of the CENTER-TBI database are described

CO2, carbon dioxide; CRP, C reactive protein; CT, computed tomography; DAI, diffuse axonal injury; ICP, intracranial pressure; PH, hydrogen ion concentration or acidity; 
Sah, subarachnoid hemorrhage; SOL, shift of the midline structures

Variable type Description

Age Age at the time of hospitalization

Sex Sex information

Theater Time between the traumatic event and when the monitoring device for ICP is inserted

Pupil Pupil Reactivity Score

CT variables CT_DAI versus SOL (presence of DAI vs. SOL), CT midline shift, CT_Sah (presence of Sah), CT_contusion, CT_depression of skull frac-
tured, CT_basal cisterns absent compressed, CT_extradurahematoma

Lab variables Data collected through a blood sample, at the time of hospitalization. The data available were the following: sodium, potassium, 
glucose, hemoglobin, white blood cell counts, lymphocytes, neutrophils, platelet, CRP, and albumin

Emergency 
department 
data

Emergency data information were available for adults at the time of arrival in hospital. These included arrival PH, lactate, arrival arterial 
CO_2 (mm Hg)

https://icmplus.neurosurg.cam.ac.uk
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works as follows: nodes represent time points, and an 
edge between two nodes is present when the criterion of 
the “horizontal visibility” is met [18]. Briefly, two nodes 
are connected if they “can see” each other horizontally, 
i.e., if all the values separating the two in time are of 
lower, or equal, magnitude. Because in our case we have 
the same sets of nodes for each layer, we used a special 
type of multilayer network named multiplex, where each 

node in a layer is connected to the corresponding one in 
the other layers.

An example of a multiplex network model, in which 
one layer represents ICP and the other represents HR, is 
shown in Fig. 2.

Using the complex network approach, we obtained two 
network measures: the interlayer mutual information 
( mict) and the average edge overlap (ωct ). The average 

Table 2 Overview of the variables used in the model

We present here an overview of the variables used in the model, with distribution divided between survivors and nonsurvivors, and the associated p value of the two-
sampled Student’s t-test between the vectors of the features evaluated in the two populations

 CRP, C reactive protein; ctnp , brain–heart crosstalks; DAI, diffuse axonal injury; IMPACT, international mission for prognosis and analysis of clinical trials [23]; mict , 
mutual information;  pCO2, partial pressure of carbon dioxide; PH, hydrogen ion concentration or acidity; SD, standard deviation; ωct, average edge overlap

Features Survivors (n = 176) Nonsurvivors (n = 50) p value

Age (mean ± SD) 42.98 ± 17.13 59.44 ± 16.9  < 0.05

Sex 34 females,142 males 12 females, 38 males  < 0.05

Pupil IMPACT score

 0 117 31  < 0.05

 1 21 3  < 0.05

 2 38 26  < 0.05

Arrival PH (mean ± SD) 4.62 ± 3.55 4.69 ± 3.55  > 0.05

Arrival lactate (mean ± SD) 2.50 ± 6.2 2.9 ± 6.8  > 0.05

Arrival art pCO2 mm hg (mean ± SD) 25.7 ± 21 26.05 ± 21.6  > 0.05

Sodium molL_1 (mean ± SD) 121.30 ± 47 120.308 ± 49  > 0.05

Potassium (mean ± SD) 3.21 ± 1.49 3.28 ± 1.58  > 0.05

Glucose (mean ± SD) 6.49 ± 4.5 6.62 ± 4.54  > 0.05

Hemoglobin dL (mean ± SD) 11.67 ± 4.26 11.02 ± 4.70  > 0.05

White blood cell pct_1 (mean ± SD) 11.38 ± 7.4 11.9 ± 8.4  > 0.05

Lymphocytes (mean ± SD) 7.45 ± 10.70 7.32 ± 9.85  > 0.05

Neutrophils (mean ± SD) 43.48 ± 39 49.47 ± 30  > 0.05

Platelet (mean ± SD) 181 ± 93 175.68 ± 93  > 0.05

CRP (mean ± SD) 3.49 ± 17 3.046 ± 7.87  > 0.05

Albumin (mean ± SD) 12 ± 17 15.93 ± 8.64  > 0.05

Theater (mean ± SD) 1.001 ± 0.69 0.98 ± 0.69  > 0.05

ctnp(mean ± SD) 0.17 ± 0.49 0.11 ± 0.16  < 0.05

mict(mean ± SD) 0.55 ± 0.066 0.54 ± 0.08  > 0.05

ωct(mean ± SD) 0.70 ± 0.09 0.65 ± 0.11  < 0.05

DAI  > 0.05

 0 142 44

 1 34 6

Midline shift  > 0.05

 0 110 25

 1 66 25

Subarachnoid hemorrhage  > 0.05

 0 86 20

 1 10 6

 2 63 13

Contusion  > 0.05

 0 76 17

 1 86 23

 2 14 10
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edge overlap ωct quantifies the coherence of the over-
all graph, and the higher it is, the higher the coherence 
of the graph layers. The interlayer mutual information 
mict models the degree distribution of the two graphs. 
Because one measure reflects the edges, and the other 
focuses on the nodes, the two measures complement 
each other, and they report a complete picture of the 
joint behavior of the two analyzed time series. They were 
therefore chosen as representatives of the graphs cor-
responding to the detected brain–heart crosstalk event 
windows. Complete details on the whole multiplex mod-
eling can be found in our previous work [13].

The three defined measures of crosstalks, i.e., the 
count ctnp , the interlayer mutual information mict and 

the edge overlap ωct , were added to the set of predictive 
features in the mortality model.

Mortality Model Predictions
In order to build a predictive mortality model we 
applied an elastic-net logistic regression machine learn-
ing approach [19, 20] obtaining a model for each of the 
four age groups in which the population was segmented, 
as described in the Results section. The machine learn-
ing approach used, is a slight modification of the stand-
ard logistic regression, enriched with a lasso and a ridge 
regression to overcome multicollinearity issues [19, 20]. It 
also performs an automatic features selection, embedded 
in the optimization resolution problem. Two parameters 
need to be set for the elastic-net model: � and α , which 
are respectively used to tune the lasso and ridge contri-
bution in the optimization function. In our experiment 
α=0.5 and � was defined through a leave one out cross 
validation procedure, in which turn n-1 number of obser-
vations are used as training set and the remaining one 
is used as test set. The � values selected for each model 
as well as the performances of each model (in terms of 
percentage of null deviance explained) are specified in 
Table 3, at the top of each specific section discussing the 
model for each age range. Each model was fed with the 
set of input features described in Table  1 together with 
the newly introduced brain–heart crosstalk indicators.

Statistical Analysis
The brain–heart crosstalks algorithm as well as the sta-
tistical analysis was conducted using R software [21] 
version 3.6.0. The point biserial correlation test was per-
formed to verify the correlation between brain–heart 
crosstalks measures and mortality. Pearson correlation 
coefficient was used to test correlation between input 
features. Kruskal–Wallis test was used to verify the pres-
ence of statistically significant difference between distri-
butions of brain–heart crosstalks variables in surviving 
and nonsurviving patients with TBI.

Results
Crosstalks and Preliminary Statistical Analysis
A mean number of 57 brain–heart crosstalks, per 
patient, with a high standard deviation of 58, were 
detected. The value of brain–heart crosstalks was nor-
malized by the length of the time series observed per 
patient, and its correlations with the other predictive 
variables are reported in Fig. 3. The apparent “squared 
patterns” of correlations, starting from the left upper 
corner of the correlation matrix, are likely to corre-
spond to similar features, for instance lab blood sam-
ples analysis or CT features. These subgroups appear 

Fig. 1 Example of one brain–heart crosstalk. In the figure we present 
time trends for more than 10 min of observations for HR and ICP. 
The blue rectangle denotes the presence of a simultaneous increase 
of HR and ICP. The event was detected using the sliding window 
approach. (HR heart rate, ICP intracranial pressure)

Fig. 2 Figure showing the multilayer network model. Each layer is a 
time series. The top layer here represents HR, whereas the lowest layer 
represents ICP. Each node is a time stamp, and connections between 
two nodes are defined according to the horizontal visibility criterion 
[13]. (HR heart rate, ICP intracranial pressure)
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to be naturally correlated, although other correlations, 
even if milder, appear in the rest of the plot.

The relationship between mortality and brain–heart 
crosstalks was first examined using the distribution 
analysis of brain–heart crosstalks and related network 
measures, comparing survivors and nonsurvivors. Fig-
ure 4 shows the boxplots of the distributions of ctnp, ωct 
and mict for the entire cohort (n = 226).

The point biserial correlation between mortality and 
ctnp in adults is − 0.13 with a significant p value of 0.04. 
This seems to suggest an inverse relationship exist-
ing between mortality and brain–heart crosstalks in 
the cohort analyzed. Same can be said for ωct which 
present − 0.19 as a point biserial correlation (with 

significant p value of 0.002) and for mict with − 0.09 
(with a p value slightly more than the significant thresh-
old, and equal to 0.13).

Moreover, as it can be appreciated from the ctnp boxplot 
in Fig. 4, the visual difference between the survivors and 
nonsurvivors distribution of the brain–heart crosstalks 
measures was confirmed statistically. The Kruskal–Wallis 
test to compare the distributions of the three measures 
returned significant p values for all of them: 0.02 for mict , 
0.005 for ctnp and 0.006 for ωct.

Mortality Model
The age distribution of the patients included in this study 
ranged between 16 and 85 years old and is presented in 

Table 3 � , percentages null deviance and coefficients selected by the elastic-net model are shown in the figure

At the top of the table, we can see the age ranges they refer to. Coefficients are specified in the second column of each table. Dots (.) in the coefficients column mean 
that the variable was not selected as significant

CRP, C reactive protein; CT, computed tomography; ctnp , brain–heart crosstalks; mict , mutual information; PH, hydrogen ion concentration or acidity; Sah, subarachnoid 
hemorrhage; SOL, shift of the midline structures; ωct, average edge overlap

Variables Age 16–29 model, 
� = 0.019, dev. ratio: 
0.74

Age 30–49 model, 
� = 0.04, dev. ratio: 0.47

Age 50–64 model, 
� = 0.0002, dev. ratio: 
0.92

Age 65–85, model, 
� = 0.00003, dev. ratio: 
0.99

Selected coefficients Selected coefficients Selected coefficients Selected coefficients

Intercept  − 4.27  − 2.46  − 8.3  − 0.81

Age  − 2.56 6.31

Sex 0.001 3.27  − 0.82

Pupil 0.006 0.23 0.60 4.20

Arrival PH 0.11 0.32 8.49  − 5.71

Lactate 0.2  − 8.09 7.9

Arrival arterial CO_2 0.18 0.33  − 8.29  − 1.1

Sodium 0.01  − 0.56  − 4.9

Potassium  − 2.69 2.71

Glucose  − 0.009 3.1  − 4.59

Hemoglobin  − 0.44 0.40  − 3.12

White blood cell counts 1.33  − 3.68

Lymphocytes  − 1.26 10.92

Neutrophils  − 2.03  − 1.71

Platelet  − 0.10 2.55 3.22

CRP 0.34 0.099  − 2.92 0.37

Albumin 1.01 5.32 2.60

CT_DAI versus SOL  − 7.90 3.99

CT_MidlineShift  − 2.31  − 4.41

CT_Sah 1.04  − 3.38  − 2.79

CT_Contusion 0.12 6.51  − 3.25

CT_DeprSkullFract 0.52  − 3.94 2.87

CT_BasalCisternsAbsentCompressed  − 3.41 0.95

CT_ExtraduralHema  − 0.23  − 3.79 3.65

Theater 0.38  − 2.13  − 1.41

 ctnp  − 0.08  − 3.39  − 3.46

 mict  − 1.10 3.32 4.95

 ωct  − 0.11  − 0.37  − 0.78  − 1.84
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Fig. 5 panel a. Age has been shown to have a significant 
impact toward TBI prognostic and outcome prediction 
[22], also because of its influence on the likelihood of 
comorbidities. To decrease the heterogeneity of patients 
analyzed in the mortality models, the whole dataset was 
divided into four age category subgroups. In panel b of 
Fig. 5 we show the number of patients with the associated 
age range after the splitting process, whose composition 
is homogeneous within groups and heterogeneous across 
groups. In other words, the division into four age groups 
was performed in a way in which we could obtain four 

groups of homogeneously aged patients, with comparable 
sample size, in order to be statistically possible the com-
parison between groups. In this way we could still include 
age as a predictor variable in each of the four models, 
while avoiding using it as a confounding factor, when 
considering the entire population with no age distinction. 
In Table 3, we show the results for the models fitted for 
each age group, including their deviance ratio explained, 
in the header of each table. Coefficients for all the fea-
tures in the model are presented. The best fitting models 
appears to be for the age populations range aged 16–29, 

Fig. 3 Pearson correlation of the predictive variables for the adult cohort. The matrix is symmetric, and we included here all the clinical, lab, imag-
ing, as well as brain–heart crosstalks variables. (CRP C reactive protein; CT computed tomography; ctnp brain–heart crosstalks;  DAI diffuse axonal 
injury; mict mutual information;   SOL shift of the midline structures;  ωct average edge overlap)
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50–64, and 65–85. Indeed, the deviance ratio is high 
which means that the predictors included in the model 
explain with very high reliability the mortality outcome. 
Interestingly, the negative relationship between mortality 
and ctnp in all the age populations is confirmed as well as 

the one between mortality and the average edge overlap 
during crosstalks. In so far as the other populations are 
concerned, the best fit of the model appears to be for the 
age range 65–85. We also performed experiments with 
and without the newly introduced brain–heart crosstalks 

Fig. 4 Distribution of the brain–heart crosstalks measures for survivors and nonsurvivors. The p value of the Kruskal–Wallis test performed between 
the two distributions is also shown in the figure. ( ctnp brain–heart crosstalks)

Fig. 5 Distribution of age in the adult cohort. A Histogram of age distribution in the high-resolution CENTER-TBI cohort on top. B Age ranges 
groups and their relative numerosity, in the lower part of the figure
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measures. The deviance ratio actually does improve for 
the case of age range 16–29 (from 49 to 79%) and 65–85 
(from 93 to 99%). In Table 3, we only reported the value 
of the significant coefficients. If a dot is in the corre-
sponding cell, it means the coefficient is not significant. 
We also performed further experiments using only the 
IMPACT (International Mission for Prognosis and Anal-
ysis of Clinical Trials [23]) variable scores as predictors 
and adding subsequently also brain–heart crosstalks 
measures to the model to evaluate if the IMPACT vari-
ables would have benefited from the introduction of our 
brain–heart crosstalks variables. In particular, we used 
the standard IMPACT variables of age, motor score, 
pupils, hypoxia, hypotension, CT variables, glucose, and 
hemoglobin for predicting mortality using the logis-
tic regression approach and subsequently we added the 
brain–heart crosstalks measures to the IMPACT scores 
and evaluated performances of the models so obtained 
in predicting mortality of the patients. In all the cases 
the deviance ratio of the model improved, except for the 
group 50–64 where it remained the same.

To investigate further the correlation between brain–
heart crosstalks and mortality, the point biserial correla-
tion coefficients between mortality and the brain–heart 
crosstalks measures were also obtained. The results, sum-
marized in Fig.  6, shows the point biserial correlation 
coefficients between the network measures and mortal-
ity, exhibiting negative sign in almost all of them. Moreo-
ver, in Fig. 6 we present the boxplots of the three newly 
introduced brain–heart crosstalks measures for survivors 
and nonsurvivors in the four age groups. In Table  4 we 
report the p values of the Kruskal–Wallis test performed 
for the brain–heart crosstalks measures of the four age 
groups, comparing survivors and nonsurvivors. 

Discussion
In this article, we investigated the relationship between 
mortality and events of interaction between brain and 
heart in patients with TBI, named brain–heart crosstalks.

Brain–heart crosstalks were introduced in our previous 
work [11]. This novel metric detects events of simultane-
ous increases of ICP and HR.

Brain–heart crosstalks measures were further 
extended, through a complex network modeling [13], 
which led to the computation of two measures for the 
ICP-HR system: average edge overlap ( ωct) and mutual 
information ( mict ), which give indication of the behavior 
of the system during brain–heart crosstalks, as described 
more in details in the methods section.

From the current study, we could see that the results 
suggested an inverse relationship between brain–heart 
crosstalks measures and mortality. The point biserial 
correlation coefficient was always negative, for the three 

network measures and mortality. This was true for the 
case in which we computed it using the 226 patients and 
when segmenting the population in four age groups. In 
fact, for our mortality model we divided the population 
in age groups in the attempt of decreasing the hetero-
geneity brought by this clinical variable. Important dif-
ferences in terms of comorbidities, type of lesions and 
outcome prospective are related to age, particularly in 
the face of the TBI population aging in western countries.

The first indication of a negative relationship between 
mortality and brain–heart crosstalk measure, was further 
confirmed by the Kruskal–Wallis tests between survivors 
and nonsurvivors distribution of those measures in the 
whole dataset. In addition, when segmenting the origi-
nal population, at least one of the brain–heart crosstalks 
measures was statistically significantly different between 
survivors and nonsurvivors for each age group, except 
for the age group 50–64. However, for this age group in 
the logistic regression model, the coefficient associated 
to average edge overlap, and the normalized numbers 
of crosstalks ctnp , was statistically significant and with 
a negative sign. Logistic elastic-net prediction models 
appeared to have a good fitting to the data, as the per-
centage of deviance ratio explained is sufficiently high. 
This was true except for the age group 30–49. These age-
related findings are difficult to explain based on the data-
set studied and warrant further investigation in a larger 
group.

Another important aspect to be considered is that the 
sign of the ctnp coefficient was consistently negative for 
all the four age groups. Given these results, we can con-
firm that the higher the number of brain–heart cross-
talks, the lower is the probability of mortality. This result 
is confirmed independently of the age group to which the 
individuals belong to.

Similar behavior was exhibited by the average edge 
overlap, while for the mutual information two age groups 
showed positive relationship between mortality and the 
indicator. This evidence will need further investigation in 
the future.

Overall, our results suggest that the newly introduced 
variables of brain–heart crosstalks, might be consid-
ered as biomarkers of a healthy brain–heart interac-
tion and therefore the assessment of these biomarkers 
could play a role in understanding the pathological 
mechanisms in TBI. The complexity of such a disease is 
indeed difficult to explain with simply measuring mean 
ICP values and multimodality physiological monitoring 
techniques have been developed to improve our under-
standing and are implemented in the clinical practice. 
In this perspective, considering brain–heart crosstalks 
along with other physiology measures in integrated 
protocols may be a promising approach.
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Fig. 6 (See legend on next page.)
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For what concerns the other variables of the predic-
tion models fitted, age came as a statistically significant 
element only for the two older age groups, but not for 
the two younger ones. This is in line with findings sug-
gested by the literature, where there is evidence that 
older age might be a factor worsening the outcome of 
TBI, because of the comorbidities associated along with 
other factors [22]. Moreover, from the fitted models, as 
we can see in Table 3 for the older populations, almost 
all the variables have statistically significant coeffi-
cients, unlike younger population groups. This is con-
sistent with the fact that the model for the two older 
population groups showed a better fitting than the 
younger population groups. Possibly, the higher preva-
lence of cardiologic preexisting disease may explain the 
relevance of the brain–heart interplay in the elderly.

As a final consideration our analysis shed light on 
the possibility of integrating brain–heart crosstalks 
measures into the existing TBI prognostic models. A 
very well-known prognostic model is the IMPACT 
score [23], where admission features as for instance 
age, motor score, pupils, hypoxia, hypotension, CT 
variables, glucose, and hemoglobin are used to evaluate 
patient’s condition at the time of hospitalization. Some 
work has been done for what concerns more complex 
prognostic models development, but to the best of our 
knowledge, none has ever taken into account variables 
expressing the interaction between brain and heart 
[24]. Therefore, our analysis opens the possibility for 
implementing the TBI prognostic models with brain–
heart interaction measures, and hopefully increasing 
their precision.

Conclusions
We found an inverse relationship between the number of 
brain–heart crosstalks events and mortality in patients 
with TBI. We also applied two further indicators of 
brain–heart crosstalks from a complex network mode-
ling of the ICP-HR system, which showed similar inverse 
behavior with mortality. The inverse relationship was also 
confirmed when fitting the input features into a mortality 
prediction model.

We are currently investigating how brain–heart cross-
talks relate to other physiological variables (e.g., auto-
nomic nervous activities) or clinical variables (treatments 
a patient receives, airways suctioning, presence of intrac-
ranial hypertension or impaired autoregulation). In so far 
as limitations are concerned, we believe that the division 
into four age groups was necessary to avoid confounding 
effects due to patients’ wide age differences. However, 
we are aware that this reduces the number of observa-
tions in each group when fitting the related models thus 
potentially resulting in fitting bias. Therefore, we plan to 
extend the study to a larger cohort of patients to explore 
further the model proposed. Currently we have started 
a preliminary analysis concerning the evidence of a cau-
sality existing between HR and ICP during brain–heart 
crosstalks, which could lead to another important contri-
bution toward the use of brain–heart crosstalks in clini-
cal practice. For future work, it would also be interesting 
understanding the possible relationship between differ-
ent events (such as only raised ICP) with mortality.

Furthermore, we would like to extend the use of the 
crosstalks as a real-time digital biomarker in patients 
with TBI, through the use of an ICM+-Python plugin 
interface [17] running at the bedside. This would ulti-
mately facilitate the use our new metric in the individual-
ized management of this patients. We are in the process 
of implementing in Python the code developed initially in 
R.
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