11 research outputs found

    SARS-Cov-2 Spike Protein Antibody Titers In Cord Blood After Vaccination Against Covid-19 During Pregnancy

    Get PDF
    In the early months of the COVID-19 pandemic, pregnant patients faced uncertain risks associated with severe acute respiratory syndrome SARS-CoV-2 viral infection. Aim of the study was to determine the titer of specific maternal and umbilical cord antibodies against SARS-CoV-2 viral protein S receptor domain after maternal antenatal vaccination. The paper presents preliminary results of the study proceeded in the department. 13 patients vaccinated during different gestational age have been included in the study. All patients participating in this study were vaccinated with two doses of BNT162b2 mRNA COVID-19 vaccine between the 4 to 31 week of gestation. The in vitro qualitative and quantitative determination of antibodies against SARS-CoV-2 viral protein S receptor domain in serum samples was performed by using an electrochemiluminescence immunoassay.  Study results demonstrated that, vaccination against SARS-Cov-2 viral infection during pregnancy is accompanied with adequate production of antibodies that probably may defense neonates from severe infection at least within 6 month of life. Study has revealed positive correlation between time interval of vaccination and delivery for the presence of high titers of SARS-Cov-2 viral protein S receptor domain antibodies in neonatal cord blood, which may allow future determination of the optimal timing of COVID-19 vaccination in pregnant women although this problem need more future studies

    Inositols: From established knowledge to novel approaches

    Get PDF
    Myo-inositol (myo-Ins) and D-chiro-inositol (D-chiro-Ins) are natural compounds involved in many biological pathways. Since the discovery of their involvement in endocrine signal transduction, myo-Ins and D-chiro-Ins supplementation has contributed to clinical approaches in ameliorating many gynecological and endocrinological diseases. Currently both myo-Ins and D-chiro-Ins are well-tolerated, effective alternative candidates to the classical insulin sensitizers, and are useful treatments in preventing and treating metabolic and reproductive disorders such as polycystic ovary syndrome (PCOS), gestational diabetes mellitus (GDM), and male fertility disturbances, like sperm abnormalities. Moreover, besides metabolic activity, myo-Ins and D-chiro-Ins deeply influence steroidogenesis, regulating the pools of androgens and estrogens, likely in opposite ways. Given the complexity of inositol-related mechanisms of action, many of their beneficial effects are still under scrutiny. Therefore, continuing research aims to discover new emerging roles and mechanisms that can allow clinicians to tailor inositol therapy and to use it in other medical areas, hitherto unexplored. The present paper outlines the established evidence on inositols and updates on recent research, namely concerning D-chiro-Ins involvement into steroidogenesis. In particular, D-chiro-Ins mediates insulin-induced testosterone biosynthesis from ovarian thecal cells and directly affects synthesis of estrogens by modulating the expression of the aromatase enzyme. Ovaries, as well as other organs and tissues, are characterized by a specific ratio of myo-Ins to D-chiro-Ins, which ensures their healthy state and proper functionality. Altered inositol ratios may account for pathological conditions, causing an imbalance in sex hormones. Such situations usually occur in association with medical conditions, such as PCOS, or as a consequence of some pharmacological treatments. Based on the physiological role of inositols and the pathological implications of altered myo-Ins to D-chiro-Ins ratios, inositol therapy may be designed with two different aims: (1) restoring the inositol physiological ratio; (2) altering the ratio in a controlled way to achieve specific effects

    COVID-19 Pregnancy and Psycho-neurological Disturbance: Single Hospital Case Report

    No full text
    31 years old pregnant woman at 38 1/7 week of gestation with fever has been admitted to the TSMU   First University Clinic Emergency, with positive COVID-19 PCR test. With characteristic complains of COVID-19 infection.  Family history not significant. Personal history reveals childhood seizure as a result of fever. Vital signs at the admission within normal ranges. All protocol based laboratory tests has been done and protocol based treatment initiated. On the seventh day of Covid-19 infection because of episodes of desaturation and termed gestation, pregnancy termination by induction has been done successfully. At the end of early puerperal period because of hypoxemia resistant to oxygen therapy and CT scan diagnosed severe viral induced pneumonia, with symptoms of encephalopathy has been documented.  Later patient transferred to the mechanical ventilation, protocol based lab tests, diagnostic procedures and treatment initiated. After 1 month with improved condition patient has been transferred to the ob/gyn department for ongoing treatment and rehabilitation at this time severely expressed symptoms of encephalopathy were documented.The underlying mechanisms of neurologic complications in patients with COVID-19 are diverse and, in some cases, multifactorial. Neurologic complications may arise from direct effects of the virus as well as systemic response to the infection or as a result of long lasting inadequate oxygenation of all tissues. Although mechanical ventilation is highly complicated by brain damage, covid-19 induced encephalopathies are as well documented and need more scientifically proved facts of the viral role in this complication

    Experts' opinion on inositols in treating polycystic ovary syndrome and non-insulin dependent diabetes mellitus: a further help for human reproduction and beyond

    No full text
    Introduction: This Experts' opinion provides an updated scientific support to gynecologists, obstetricians, endocrinologists, nutritionists, neurologists and general practitioners on the use of Inositols in the therapy of Polycystic Ovary Syndrome (PCOS) and non-insulin dependent (type 2) diabetes mellitus (NIDDM).Areas covered: This paper summarizes the physiology of Myo-Inositol (MI) and D-Chiro-Inositol (DCI), two important molecules present in human organisms, and their therapeutic role, also for treating infertility. Some deep differences between the physiological functions of MI and DCI, as well as their safety and intestinal absorption are discussed. Updates include new evidence on the efficacy exerted in PCOS by the 40:1 MI/DCI ratio, and the innovative approach based on alpha-lactalbumin to overcome the decreased therapeutic efficacy of Inositols in some patients.Expert opinion: The evidence suggests that MI, alone or with DCI in the 40:1 ratio, offers a promising treatment for PCOS and NIDDM. However, additional studies need to evaluate some still unresolved issues, such as the best MI/DCI ratio for treating NIDDM, the potential cost-effectiveness of reduced gonadotropins administration in IVF due to MI treatment, or the benefit of MI supplementation in ovulation induction with clomiphene citrate in PCOS patients

    When one size does not fit all: Reconsidering PCOS etiology, diagnosis, clinical subgroups, and subgroup-specific treatments

    No full text
    Polycystic Ovary Syndrome (PCOS) is a complex endocrine disorder that affects a large proportion of women. Due to its heterogeneity, the best diagnostic strategy has been a matter of contention. Since 1990 scientific societies in the field of human reproduction have tried to define the pivotal criteria for the diagnosis of PCOS. The consensus Rotterdam diagnostic criteria included the presence of hyperandrogenism, oligo/anovulation, and polycystic ovarian morphology (PCOM), and have now been updated to evidence based diagnostic criteria in the 2018 and 2023 International Guideline diagnostic criteria endorsed by 39 societies internationally. Within the Rotterdam Criteria, at least two out of three of the above-mentioned features are required to be present to diagnose PCOS, resulting in four phenotypes being identified: phenotype A, characterized by the presence of all the features, phenotype B, exhibiting hyperandrogenism and oligo-anovulation, phenotype C, presenting as hyperandrogenism and PCOM and finally the phenotype D that is characterized by oligo-anovulation and PCOM, lacking the hyperandrogenic component. However, it is the hypothesis of the EGOI group that the Rotterdam phenotypes A, B, and C have a different underlying causality to phenotype D. Recent studies have highlighted the strong correlation between insulin resistance and hyperandrogenism, and the pivotal role of these factors in driving ovarian alterations, such as oligo-anovulation and follicular functional cyst formation. This new understanding of PCOS pathogenesis has led the authors to hypothesis that phenotypes A, B, and C are endocrine-metabolic syndromes with a metabolic clinical onset. Conversely, the absence of hyperandrogenism and metabolic disturbances in phenotype D suggests a different origin of this condition, and point towards novel pathophysiological mechanisms; however, these are still not fully understood. Further questions have been raised regarding the suitability of the “phenotypes” described by the Rotterdam Criteria by the publication by recent GWAS studies, which demonstrated that these phenotypes should be considered clinical subtypes as they are not reflected in the genetic picture. Hence, by capturing the heterogeneity of this complex disorder, current diagnostic criteria may benefit from a reassessment and the evaluation of additional parameters such as insulin resistance and endometrial thickness, with the purpose of not only improving their diagnostic accuracy but also of assigning an appropriate and personalized treatment. In this framework, the present overview aims to analyze the diagnostic criteria currently recognized by the scientific community and assess the suitability of their application in clinical practice in light of the newly emerging evidence

    Inositols: From Established Knowledge to Novel Approaches

    Get PDF
    International audienceMyo-inositol (myo-Ins) and D-chiro-inositol (D-chiro-Ins) are natural compounds involved in many biological pathways. Since the discovery of their involvement in endocrine signal transduction, myo-Ins and D-chiro-Ins supplementation has contributed to clinical approaches in ameliorating many gynecological and endocrinological diseases. Currently both myo-Ins and D-chiro-Ins are well-tolerated, effective alternative candidates to the classical insulin sensitizers, and are useful treatments in preventing and treating metabolic and reproductive disorders such as polycystic ovary syndrome (PCOS), gestational diabetes mellitus (GDM), and male fertility disturbances, like sperm abnormalities. Moreover, besides metabolic activity, myo-Ins and D-chiro-Ins deeply influence steroidogenesis, regulating the pools of androgens and estrogens, likely in opposite ways. Given the complexity of inositol-related mechanisms of action, many of their beneficial effects are still under scrutiny. Therefore, continuing research aims to discover new emerging roles and mechanisms that can allow clinicians to tailor inositol therapy and to use it in other medical areas, hitherto unexplored. The present paper outlines the established evidence on inositols and updates on recent research, namely concerning D-chiro-Ins involvement into steroidogenesis. In particular, D-chiro-Ins mediates insulin-induced testosterone biosynthesis from ovarian thecal cells and directly affects synthesis of estrogens by modulating the expression of the aromatase enzyme. Ovaries, as well as other organs and tissues, are characterized by a specific ratio of myo-Ins to D-chiro-Ins, which ensures their healthy state and proper functionality. Altered inositol ratios may account for pathological conditions, causing an imbalance in sex hormones. Such situations usually occur in association with medical conditions, such as PCOS, or as a consequence of some pharmacological treatments. Based on the physiological role of inositols and the pathological implications of altered myo-Ins to D-chiro-Ins ratios, inositol therapy may be designed with two different aims: (1) restoring the inositol physiological ratio; (2) altering the ratio in a controlled way to achieve specific effects
    corecore