8 research outputs found

    Glancing through the accretion column of EXO 2030+375

    Full text link
    We took advantage of the large collecting area and good timing capabilities of the EPIC cameras on-board XMM-Newton to investigate the accretion geometry onto the magnetized neutron star hosted in the high mass X-ray binary EXO 2030+375 during the rise of a source Type-I outburst in 2014. We carried out a timing and spectral analysis of the XMM-Newton observation as function of the neutron star spin phase. We used a phenomenological spectral continuum model comprising the required fluorescence emission lines. Two neutral absorption components are present: one covering fully the source and one only partially. The same analysis was also carried out on two Suzaku observations of the source performed during outbursts in 2007 and 2012, to search for possible spectral variations at different luminosities. The XMM-Newton data caught the source at an X-ray luminosity of 2×10362\times10^{36} erg s1^{-1} and revealed the presence of a narrow dip-like feature in its pulse profile that was never reported before. The width of this feature corresponds to about one hundredth of the neutron star spin period. From the results of the phase-resolved spectral analysis we suggest that this feature can be ascribed to the self-obscuration of the accretion stream passing in front of the observer line of sight. We inferred from the Suzaku observation carried out in 2007 that the self-obscuration of the accretion stream might produce a significantly wider feature in the neutron star pulsed profile at higher luminosities (\gtrsim2×10372\times10^{37} erg s1^{-1}).Comment: Accepted for publication on A&

    Circumnuclear Structures in Megamaser Host Galaxies

    Get PDF
    Using the Hubble Space Telescope, we identify circumnuclear (100-500 pc scale) structures in nine new H2O megamaser host galaxies to understand the flow of matter from kpc-scale galactic structures down to the supermassive black holes (SMBHs) at galactic centers. We double the sample analyzed in a similar way by Greene et al. and consider the properties of the combined sample of 18 sources. We find that disk-like structure is virtually ubiquitous when we can resolve <200 pc scales, in support of the notion that non-axisymmetries on these scales are a necessary condition for SMBH fueling. We perform an analysis of the orientation of our identified nuclear regions and compare it with the orientation of megamaser disks and the kpc-scale disks of the hosts. We find marginal evidence that the disk-like nuclear structures show increasing misalignment from the kpc-scale host galaxy disk as the scale of the structure decreases. In turn, we find that the orientation of both the similar to 100 pc scale nuclear structures and their host galaxy large-scale disks is consistent with random with respect to the orientation of their respective megamaser disks

    IGR J17451-3022: A dipping and eclipsing low mass X-ray binary

    Get PDF
    In this paper we report on the available X-ray data collected by INTEGRAL, Swift, and XMM-Newton during the first outburst of the INTEGRAL transient IGR J17451-3022, discovered in 2014 August. The monitoring observations provided by the JEM-X instruments on board INTEGRAL and the Swift /XRT showed that the event lasted for about 9 months and that the emission of the source remained soft for the entire period. The source emission is dominated by a thermal component (kT ∼ 1.2 keV), most likely produced by an accretion disk. The XMM-Newton observation carried out during the outburst revealed the presence of multiple absorption features in the soft X-ray emission that could be associated with the presence of an ionized absorber lying above the accretion disk, as observed in many high inclination, low mass X-ray binaries. The XMM-Newton data also revealed the presence of partial and rectangular X-ray eclipses (lasting about 820 s) together with dips. The rectangular eclipses can be associated with increases in the overall absorption column density in the direction of the source. The detection of two consecutive X-ray eclipses in the XMM-Newton data allowed us to estimate the source orbital period at Porb = 22620.5+2.0 -1.8 s (1σ confidence level)
    corecore