26 research outputs found

    The omega-3 fatty acid eicosapentaenoic acid accelerates disease progression in a model of amyotrophic lateral sclerosis.

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a progressive fatal neurodegenerative disease characterised by loss of motor neurons that currently has no cure. Omega-3 polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA), have many health benefits including neuroprotective and myoprotective potential. We tested the hypothesis that a high level of dietary EPA could exert beneficial effects in ALS. The dietary exposure to EPA (300 mg/kg/day) in a well-established mouse model of ALS expressing the G93A superoxide dismutase 1 (SOD1) mutation was initiated at a pre-symptomatic or symptomatic stage, and the disease progression was monitored until the end stage. Daily dietary EPA exposure initiated at the disease onset did not significantly alter disease presentation and progression. In contrast, EPA treatment initiated at the pre-symptomatic stage induced a significantly shorter lifespan. In a separate group of animals sacrificed before the end stage, the tissue analysis showed that the vacuolisation detected in G93A-SOD1 mice was significantly increased by exposure to EPA. Although EPA did not alter motor neurone loss, EPA reversed the significant increase in activated microglia and the astrocytic activation seen in G93A-SOD1 mice. The microglia in the spinal cord of G93A-SOD1 mice treated with EPA showed a significant increase in 4-hydroxy-2-hexenal, a highly toxic aldehydic oxidation product of omega-3 fatty acids. These data show that dietary EPA supplementation in ALS has the potential to worsen the condition and accelerate the disease progression. This suggests that great caution should be exerted when considering dietary omega-3 fatty acid supplements in ALS patients

    No Benefit from Chronic Lithium Dosing in a Sibling-Matched, Gender Balanced, Investigator-Blinded Trial Using a Standard Mouse Model of Familial ALS

    Get PDF
    Background: In any animal model of human disease a positive control therapy that demonstrates efficacy in both the animal model and the human disease can validate the application of that animal model to the discovery of new therapeutics. Such a therapy has recently been reported by Fornai et al. using chronic lithium carbonate treatment and showing therapeutic efficacy in both the high-copy SOD1G93A mouse model of familial amyotrophic lateral sclerosis (ALS), and in human ALS patients. Methodology/Principal Findings: Seeking to verify this positive control therapy, we tested chronic lithium dosing in a sibling-matched, gender balanced, investigator-blinded trial using the high-copy (average 23 copies) SOD1G93A mouse (n = 27–28/group). Lithium-treated mice received single daily 36.9 mg/kg i.p. injections from 50 days of age through death. This dose delivered 1 mEq/kg (6.94 mg/kg/day lithium ions). Neurological disease severity score and body weight were determined daily during the dosing period. Age at onset of definitive disease and survival duration were recorded. Summary measures from individual body weight changes and neurological score progression, age at disease onset, and age at death were compared using Kaplan-Meier and Cox proportional hazards analysis. Our study did not show lithium efficacy by any measure. Conclusions/Significance: Rigorous survival study design that includes sibling matching, gender balancing, investigato

    A Randomized, Double Blind, Placebo-Controlled Trial of Pioglitazone in Combination with Riluzole in Amyotrophic Lateral Sclerosis

    Get PDF
    BACKGROUND: Pioglitazone, an oral anti-diabetic that stimulates the PPAR-gamma transcription factor, increased survival of mice with amyotrophic lateral sclerosis (ALS). METHODS/PRINCIPAL FINDINGS: We performed a phase II, double blind, multicentre, placebo controlled trial of pioglitazone in ALS patients under riluzole. 219 patients were randomly assigned to receive 45 mg/day of pioglitazone or placebo (one: one allocation ratio). The primary endpoint was survival. Secondary endpoints included incidence of non-invasive ventilation and tracheotomy, and slopes of ALS-FRS, slow vital capacity, and quality of life as assessed using EUROQoL EQ-5D. The study was conducted under a two-stage group sequential test, allowing to stop for futility or superiority after interim analysis. Shortly after interim analysis, 30 patients under pioglitazone and 24 patients under placebo had died. The trial was stopped for futility; the hazard ratio for primary endpoint was 1.21 (95% CI: 0.71-2.07, p = 0.48). Secondary endpoints were not modified by pioglitazone treatment. Pioglitazone was well tolerated. CONCLUSION/SIGNIFICANCE: Pioglitazone has no beneficial effects on the survival of ALS patients as add-on therapy to riluzole. TRIAL REGISTRATION: Clinicaltrials.gov NCT00690118

    Treatment with lithium carbonate does not improve disease progression in two different strains of SOD1 mutant mice

    No full text
    It has been shown that chronic treatment with lithium carbonate (Li(2)CO(3)) in presymptomatic SOD1G93A transgenic male mice, a model of ALS, was able to remarkably increase their lifespan through the activation of autophagy and the promotion of mitochondriogenesis and neurogenesis. This prompted us to test the lithium effect also in female SOD1G93A mice with two phenotypes of different disease severity. Female SOD1G93A mice of C57BL/6J or 129S2/Sv genetic background were treated daily with Li(2)CO(3) 37 mg/kg (1 mEq/kg) i.p. starting from age 75 days until death. Grip strength, latency to fall on rotarod and body weight were monitored twice weekly. At the time of death the spinal cord was removed to assess the number of motor neurons and to measure the expression of a marker of autophagy (LCII) and the activity of mitochondrial complex IV. We observed a significant anticipation of the onset and reduced survival in 129Sv/G93A and no effect in C57/G93A mice treated with lithium compared to vehicle treated mice. Moreover, lithium neither exerted neuroprotective effects nor increased the expression of LCII and the activity of mitochondrial complex IV in the spinal cord. The present study does not identify any therapeutic or neuroprotective effect of lithium in SOD1G93A female mice

    Astrocyte activation in G93A-SOD1 C57BL/6 mice treated with EPA at the pre-symptomatic stage of the disease is reduced by treatment.

    No full text
    <p>Some astrocytes can be observed in the wild-type littermate spinal cord (A–C). In the spinal cord of G93A-SOD1 mice, there is a significant increase in the number of astrocytes (D–F). The treatment with EPA did not significantly alter the number of astrocytes in wild type mice (G–I), but significantly reduced astrocytic activation in G93A-SOD1 mice (J–L) in comparison to the corresponding control group. Quantitative analysis of astrocytic cell number (M) and staining intensity (N) in the ventral horn of the mice spinal cord: GFAP (astrocytes, red), Nissl stain (neurons, green) and DAPI (nuclei, blue). Scale bar = 100 µm.</p

    Motor neuron axonal loss in G93A-SOD1 C57BL/6 mice treated with EPA at the pre-symptomatic stage of the disease is not affected by dietary EPA.

    No full text
    <p>ChAT-labelled motor neuron axons can be observed (A–D). There are significantly fewer axons in G93A-SOD1 mice compared to the wild type littermates. No significant difference in the number of axons was observed between the EPA and control diet groups. Scale bar = 100 µm.</p

    Oral administration of EPA increases plasma EPA levels in G93A-SOD1 mice.

    No full text
    <p>Mice administered with either a single bolus dose of EPA (300 mg/kg, p.o.) or fed with an EPA enriched diet (300 mg/kg/day) for 7 days had higher levels of EPA and DHA in their plasma than mice fed on the control diet.</p
    corecore