132 research outputs found

    Contrasting adaptation of xylem to dehydration in two Vitis vinifera L. sub-species

    Get PDF
    Xylem hydraulic properties of agricultural crop species can be linked to their region of origin, but because crop systems are often irrigated to reach optimum quality and yield, key differences in drought resistance are not often considered. We investigated how hydraulic conductivity and xylem vulnerability to drought-induced cavitation of two grapevine cultivars correspond to their centers of domestication with 'Merlot' (Vitis vinifera subspecies occidentalis) having been domesticated in a temperate forest region, and 'Thompson Seedless' (Vitis vinifera subspecies orientalis) domesticated in a semi-arid region. We used anatomical measurements and xylem vulnerability curves to evaluate hydraulic traits and drought resistance. Our results showed that 'Thompson Seedless' was significantly more vulnerable to drought-induced cavitation than 'Merlot'. Bench dehydration produced significantly different estimations of xylem vulnerability to cavitation in each cultivar. This result was consistent with anatomical measurement, with 'Thompson Seedless' stems having greater maximum stem-specific hydraulic conductivity, more vessels, higher vessel density and a greater lumen fraction than 'Merlot'. The relatively large amount of xylem vessels and lumen area in 'Thompson Seedless' is consistent with domestication in a semi-arid habitat where a greater number and size diversity of xylem vessels would be needed to transport water and meet evaporative demand as opposed to cultivars that were domesticated in temperate forest regions like 'Merlot'. These differences appear to expose 'Thompson Seedless' to high xylem vulnerability to cavitation

    Chandra observations of the pulsar wind nebula in SNR G0.9+0.1

    Get PDF
    We present observations with the Chandra X-ray Observatory of the pulsar wind nebula (PWN) within the supernova remnant G0.9+0.1. At Chandra's high resolution, the PWN has a clear axial symmetry; a faint X-ray point source lying along the symmetry axis possibly corresponds to the pulsar itself. We argue that the nebular morphology can be explained in terms of a torus of emission in the pulsar's equatorial plane and a jet directed along the pulsar spin axis, as is seen in the X-ray nebulae powered by other young pulsars. A bright clump of emission within the PWN breaks the axisymmetry and may correspond to an intermediate-latitude feature in the pulsar wind.Comment: 5 pages, 2 embedded EPS figures, uses emulateapj.sty . Accepted to ApJ Letter

    X-ray observations of the high magnetic field radio pulsar PSR J1814-1744

    Get PDF
    PSR J1814-1744 is a 4 s radio pulsar with surface dipole magnetic field strength 5.5*10^13 G, inferred assuming simple magnetic dipole braking. This pulsar's spin parameters are very similar to those of anomalous X-ray pulsars (AXPs), suggesting that this may be a transition object between the radio pulsar and AXP population, if AXPs are isolated, high magnetic field neutron stars as has recently been hypothesized. We present archival X-ray observations of PSR J1814-1744 made with ROSAT and ASCA. X-ray emission is not detected from the position of the radio pulsar. The derived upper flux limit implies an X-ray luminosity significantly smaller than those of all known AXPs. This conclusion is insensitive to the possibility that X-ray emission from PSR J1814-1744 is beamed or that it undergoes modest variability. When interpreted in the context of the magnetar mechanism, these results argue that X-ray emission from AXPs must depend on more than merely the inferred surface magnetic field strength. This suggests distinct evolutionary paths for radio pulsars and AXP, despite their proximity in period--period derivative phase space.Comment: 11 pages, including 2 embedded figures. Accepted by Ap

    A radio supernova remnant associated with the young pulsar J1119-6127

    Get PDF
    We report on Australia Telescope Compact Array observations in the direction of the young high magnetic-field pulsar J1119-6127. In the resulting images we identify a non-thermal radio shell of diameter 15', which we classify as a previously uncatalogued young supernova remnant, G292.2-0.5. This supernova remnant is positionally coincident with PSR J1119-6127, and we conclude that the two objects are physically associated. No radio emission is detected from any pulsar wind nebula (PWN) associated with the pulsar; our observed upper limits are consistent with the expectation that high magnetic-field pulsars produce radio nebulae which fade rapidly. This system suggests a possible explanation for the lack of an associated radio pulsar and/or PWN in many supernova remnants.Comment: 13 pages, 6 embedded eps figures. Accepted to Ap

    Assessing climate change impacts on live fuel moisture and wildfire risk using a hydrodynamic vegetation model

    Get PDF
    Live fuel moisture content (LFMC) plays a critical role in wildfire dynamics, but little is known about responses of LFMC to multivariate climate change, e.g., warming temperature, CO2 fertilization, and altered precipitation patterns, leading to a limited prediction ability of future wildfire risks. Here, we use a hydrodynamic demographic vegetation model to estimate LFMC dynamics of chaparral shrubs, a dominant vegetation type in fire-prone southern California. We parameterize the model based on observed shrub allometry and hydraulic traits and evaluate the model\u27s accuracy through comparisons between observed and simulated LFMC of three plant functional types (PFTs) under current climate conditions. Moreover, we estimate the number of days per year of LFMC below 79 % (which is a critical threshold for wildfire danger rating of southern California chaparral shrubs) from 1960 to 2099 for each PFT and compare the number of days below the threshold for medium and high greenhouse gas emission scenarios (RCP4.5 and 8.5). We find that climate change could lead to more days per year (5.2 %–14.8 % increase) with LFMC below 79 % between the historical (1960–1999) and future (2080–2099) periods, implying an increase in wildfire danger for chaparral shrubs in southern California. Under the high greenhouse gas emission scenario during the dry season, we find that the future LFMC reductions mainly result from a warming temperature, which leads to 9.1 %–18.6 % reduction in LFMC. Lower precipitation in the spring leads to a 6.3 %–8.1 % reduction in LFMC. The combined impacts of warming and precipitation change on fire season length are equal to the additive impacts of warming and precipitation change individually. Our results show that the CO2 fertilization will mitigate fire risk by causing a 3.5 %–4.8 % increase in LFMC. Our results suggest that multivariate climate change could cause a significant net reduction in LFMC and thus exacerbate future wildfire danger in chaparral shrub systems

    Chandra Observations of G11.2-0.3: Implications for Pulsar Ages

    Full text link
    We present Chandra X-ray Observatory imaging observations of the young Galactic supernova remnant G11.2-0.3. The image shows that the previously known young 65-ms X-ray pulsar is at position (J2000) RA 18h 11m 29.22s, DEC -19o 25' 27.''6, with 1 sigma error radius 0.''6. This is within 8'' of the geometric center of the shell. This provides strong confirming evidence that the system is younger, by a factor of ~12, than the characteristic age of the pulsar. The age discrepancy suggests that pulsar characteristic ages can be poor age estimators for young pulsars. Assuming conventional spin down with constant magnetic field and braking index, the most likely explanation for the age discrepancy in G11.2-0.3 is that the pulsar was born with a spin period of ~62 ms. The Chandra image also reveals, for the first time, the morphology of the pulsar wind nebula. The elongated hard-X-ray structure can be interpreted as either a jet or a Crab-like torus seen edge on. This adds to the growing list of highly aspherical pulsar wind nebulae and argues that such structures are common around young pulsars.Comment: 16 pages, 3 figures, Accepted for publication in ApJ. For a full resolution version of Fig 1, see http://www.physics.mcgill.ca/~vkaspi/G11.2-0.3/f1.ep

    Towards a new generation axion helioscope

    Get PDF
    We study the feasibility of a new generation axion helioscope, the most ambitious and promising detector of solar axions to date. We show that large improvements in magnetic field volume, x-ray focusing optics and detector backgrounds are possible beyond those achieved in the CERN Axion Solar Telescope (CAST). For hadronic models, a sensitivity to the axion-photon coupling of \gagamma\gtrsim {\rm few} \times 10^{-12} GeV1^{-1} is conceivable, 1--1.5 orders of magnitude beyond the CAST sensitivity. If axions also couple to electrons, the Sun produces a larger flux for the same value of the Peccei-Quinn scale, allowing one to probe a broader class of models. Except for the axion dark matter searches, this experiment will be the most sensitive axion search ever, reaching or surpassing the stringent bounds from SN1987A and possibly testing the axion interpretation of anomalous white-dwarf cooling that predicts mam_a of a few meV. Beyond axions, this new instrument will probe entirely unexplored ranges of parameters for a large variety of axion-like particles (ALPs) and other novel excitations at the low-energy frontier of elementary particle physics.Comment: 37 pages, 11 figures, accepted for publication in JCA

    The International Axion Observatory (IAXO)

    Get PDF
    The International Axion Observatory (IAXO) is a new generation axion helioscope aiming at a sensitivity to the axion-photon coupling of a few 1012^{12} GeV1^{-1}, i.e. 1 - 1.5 orders of magnitude beyond the one currently achieved by CAST. The project relies on improvements in magnetic field volume together with extensive use of x-ray focusing optics and low background detectors, innovations already successfully tested in CAST. Additional physics cases of IAXO could include the detection of electron-coupled axions invoked to solve the white dwarfs anomaly, relic axions, and a large variety of more generic axion-like particles (ALPs) and other novel excitations at the low-energy frontier of elementary particle physics. This contribution is a summary of our paper [1] to which we refer for further details.Comment: 4 pages, 2 figures. To appear in the proceedings of the 7th Patras Workshop on Axions, WIMPs and WISPs, Mykonos, Greece, 201

    The Central X-Ray Point Source in Cassiopeia A

    Get PDF
    The spectacular first light observation by the Chandra X-Ray Observatory revealed an X-ray point source near the center of the 300 yr old Cas A supernova remnant. We present an analysis of the public X-ray spectral and timing data. No coherent pulsations were detected in the Chandra/HRC data. The 3-sigma upper limit on the pulsed fraction is 20 ms. The Chandra/ACIS spectrum of the point source may be fit with an ideal blackbody (kT=0.5 keV), or with BB models modified by the presence of a NS atmosphere (kT=0.25-0.35 keV), but the temperature is higher and the inferred emitting area lower than expected for a 300 yr old NS according to standard cooling models. The spectrum may also be fit with a power law model (photon index 2.8-3.6). Both the spectral properties and the timing limits of the point source are inconsistent with a young Crab-like pulsar, but are quite similar to the properties of the anomalous X-ray pulsars. The spectral parameters are also very similar to those of the other radio-quiet X-ray point sources in the supernova remnants Pup A, RCW 103, and PKS 1209-52. Current limits on an optical counterpart for the Cas A point source rule out models that invoke fallback accretion onto a compact object if fallback disk properties are similar to those in quiescent low-mass X-ray binaries. However, the optical limits are marginally consistent with plausible alternative assumptions for a fallback disk. In this case, accreting NS models can explain the X-ray data, but an accreting BH model is not promising.Comment: 17 pages including 2 figs. To appear in ApJ, Vol. 546 (Jan 10, 2001). Minor revisions per referee. Pulsation limits revised in light of HRC wiring problem. Typos correcte

    CAST constraints on the axion-electron coupling

    Full text link
    In non-hadronic axion models, which have a tree-level axion-electron interaction, the Sun produces a strong axion flux by bremsstrahlung, Compton scattering, and axio-recombination, the "BCA processes." Based on a new calculation of this flux, including for the first time axio-recombination, we derive limits on the axion-electron Yukawa coupling g_ae and axion-photon interaction strength g_ag using the CAST phase-I data (vacuum phase). For m_a < 10 meV/c2 we find g_ag x g_ae< 8.1 x 10^-23 GeV^-1 at 95% CL. We stress that a next-generation axion helioscope such as the proposed IAXO could push this sensitivity into a range beyond stellar energy-loss limits and test the hypothesis that white-dwarf cooling is dominated by axion emission
    corecore