37 research outputs found

    Amplification biases: possible differences among deviating gene expressions.

    Get PDF
    International audienceBACKGROUND: Gene expression profiling has become a tool of choice to study pathological or developmental questions but in most cases the material is scarce and requires sample amplification. Two main procedures have been used: in vitro transcription (IVT) and polymerase chain reaction (PCR), the former known as linear and the latter as exponential. Previous reports identified enzymatic pitfalls in PCR and IVT protocols; however the possible differences between the sequences affected by these amplification defaults were only rarely explored. RESULTS: Screening a bovine cDNA array dedicated to embryonic stages with embryonic (n = 3) and somatic tissues (n = 2), we proceeded to moderate amplifications starting from 1 mug of total RNA (global PCR or IVT one round). Whatever the tissue, 16% of the probes were involved in deviating gene expressions due to amplification defaults. These distortions were likely due to the molecular features of the affected sequences (position within a gene, GC content, hairpin number) but also to the relative abundance of these transcripts within the tissues. These deviating genes mainly encoded housekeeping genes from physiological or cellular processes (70%) and constituted 2 subsets which did not overlap (molecular features, signal intensities, gene ID). However, the differential expressions identified between embryonic stages were both reliable (minor intersect with biased expressions) and relevant (biologically validated). In addition, the relative expression levels of those genes were biologically similar between amplified and unamplified samples. CONCLUSION: Conversely to the most recent reports which challenged the use of intense amplification procedures on minute amounts of RNA, we chose moderate PCR and IVT amplifications for our gene profiling study. Conclusively, it appeared that systematic biases arose even with moderate amplification procedures, independently of (i) the sample used: brain, ovary or embryos, (ii) the enzymatic properties initially inferred (exponential or linear) and (iii) the preliminary optimization of the protocols. Moreover the use of an in-house developed array, small-sized but well suited to the tissues we worked with, was of real interest for the search of differential expressions

    Heterologous Production and Characterization of Two Glyoxal Oxidases from Pycnoporus cinnabarinus: Glyoxal Oxidases from Pycnoporus cinnabarinus

    No full text
    International audienceThe genome of the white rot fungus Pycnoporus cinnabarinus includes a large number of genes encoding enzymes implicated in lignin degradation. Among these, three genes are predicted to encode glyoxal oxidase, an enzyme previously isolated from Phanerochaete chrysosporium The glyoxal oxidase of P. chrysosporium is physiologically coupled to lignin-oxidizing peroxidases via generation of extracellular H2O2 and utilizes an array of aldehydes and α-hydroxycarbonyls as the substrates. Two of the predicted glyoxal oxidases of P. cinnabarinus, GLOX1 (PciGLOX1) and GLOX2 (PciGLOX2), were heterologously produced in Aspergillus niger strain D15#26 (pyrG negative) and purified using immobilized metal ion affinity chromatography, yielding 59 and 5 mg of protein for PciGLOX1 and PciGLOX2, respectively. Both proteins were approximately 60 kDa in size and N-glycosylated. The optimum temperature for the activity of these enzymes was 50°C, and the optimum pH was 6. The enzymes retained most of their activity after incubation at 50°C for 4 h. The highest relative activity and the highest catalytic efficiency of both enzymes occurred with glyoxylic acid as the substrate. The two P. cinnabarinus enzymes generally exhibited similar substrate preferences, but PciGLOX2 showed a broader substrate specificity and was significantly more active on 3-phenylpropionaldehyd

    Molecular evidence for a critical period in mural trophoblast development in bovine blastocysts

    Get PDF
    International audienceEmbryonic and extra-embryonic lineages are separated at the blastocyst stage in the mouse at the onset of implantation but well ahead of implantation in most mammals. To provide information on the development of the trophoblast lineage in late-implanting bovine embryos, we combined the use of molecular markers defining embryonic and extra-embryonic lineages in the mouse with a transcriptomic approach dedicated to the early steps of the elongation process, a characteristic feature of blastocyst development in ruminants. In this study, we present molecular evidence for differences between the cow and the mouse in the programming of trophoblast differentiation. This different programming encompasses: (i) the expression of epiblast specifying genes (Oct-4, Nanog) in bovine trophoblast cells at the onset of elongation, (ii) the transcription of proliferation markers in early elongating blastocysts, (iii) the early detection of trophoblast-specific transcripts related to extra-embryonic tissue's differentiation (Hand1, Ets2, IFN-tau) and (iv) the identification of a new transcript (c12) which displays a reciprocal pattern to that of Oct-4 and Nanog genes in the embryonic cells and for which no equivalent has thus far been found in the mouse. Altogether, these results tended to show that early elongation is a critical transition in bovine trophoblast development.
    corecore