201 research outputs found

    Preliminary results from the Caribbean Acoustic Tracking Network (CATn): a data sharing partnership for acoustic tracking and movement ecology of marine animals in the Caribbean Sea

    Get PDF
    We have recently exchanged and integrated into a single database tag detections for conch, teleost and elasmobranch fish from four separately maintained arrays in the U.S. Virgin Islands including the NMFS queen conch array (St. John nearshore), NOAA’s Biogeography Branch array (St. John nearshore & midshelf reef); UVI shelf edge arrays (Marine Conservation District, Grammanik & other shelf edge); NOAA NMFS Apex Predator array COASTSPAN (St. John nearshore). The integrated database has over 7.5 million hits. Data is shared only with consent of partners and full acknowledgements. Thus, the summary of integrated data here uses data from NOAA and UVI arrays under a cooperative agreement. The benefits of combining and sharing data have included increasing the total area of detection resulting in an understanding of broader scale connectivity than would have been possible with a single array. Partnering has also been cost-effectiveness through sharing of field work, staff time and equipment and exchanges of knowledge and experience across the network. Use of multiple arrays has also helped in optimizing the design of arrays when additional receivers are deployed. The combined arrays have made the USVI network one of the most extensive acoustic arrays in the world with a total of 150+ receivers available, although not necessarily all deployed at all times. Currently, two UVI graduate student projects are using acoustic array data

    Status of coral reef ecosystems in a marine managed area in St. Croix, USVI [poster]

    Get PDF
    This poster presents information on the status and trends of coral reef ecosystems in St. Croix, US Virgin Islands (USVI). Data were collected by NOAA’s Center for Coastal Monitoring and Assessment Biogeography Branch (CCMA-BB) from 2001-2006 at 1,275 random locations in and around Buck Island Reef National Monument (BIRNM). The main objective was to quantify changes in fish species and assemblage diversity, abundance, biomass and size structure; to provide spatially explicit information on the distribution of key species or groups of species; and to compare community structure inside versus outside of BIRNM

    An Algebraic Approach to Linear-Optical Schemes for Deterministic Quantum Computing

    Full text link
    Linear-Optical Passive (LOP) devices and photon counters are sufficient to implement universal quantum computation with single photons, and particular schemes have already been proposed. In this paper we discuss the link between the algebraic structure of LOP transformations and quantum computing. We first show how to decompose the Fock space of N optical modes in finite-dimensional subspaces that are suitable for encoding strings of qubits and invariant under LOP transformations (these subspaces are related to the spaces of irreducible unitary representations of U(N)). Next we show how to design in algorithmic fashion LOP circuits which implement any quantum circuit deterministically. We also present some simple examples, such as the circuits implementing a CNOT gate and a Bell-State Generator/Analyzer.Comment: new version with minor modification

    Bringing seascape ecology to the deep seabed: A review and framework for its application

    Get PDF
    Seascape ecology is an emerging pattern-oriented and integrative science conceptually linked to landscape ecology. It aims to quantify multidimensional spatial structure in the sea and reveal its ecological consequences. The seascape ecology approach has made important advances in shallow coastal environments, and increasing exploration and mapping of the deep seabed provides opportunities for application in the deep ocean. We argue that seascape ecology, with its integrative and multiscale perspective, can generate new scientific insights at spatial and temporal scales relevant to ecosystem-based management. Seascape ecology provides a conceptual and operational framework that integrates and builds on existing benthic ecology and habitat mapping research by providing additional pattern-oriented concepts, tools and techniques to (1) quantify complex ecological patterns across multiple scales; (2) link spatial patterns to biodiversity and ecological processes; and (3) provide ecologically meaningful information that is operationally relevant to spatial management. This review introduces seascape ecology and provides a framework for its application to deep-seabed environments. Research areas are highlighted where seascape ecology can advance the ecological understanding of deep benthic environments

    Fish assemblages and benthic habitats of Buck Island Reef National Monument (St. Croix, U.S. Virgin Islands) and the surrounding seascape: A characterization of spatial and temporal patterns

    Get PDF
    Since 1999, NOAA’s Biogeography Branch of the Center for Coastal Monitoring and Assessment (CCMA-BB) has been working with federal and territorial partners to characterize, monitor, and assess the status of the marine environment around northeastern St. Croix, U.S. Virgin Islands. This effort is part of the broader NOAA Coral Reef Conservation Program’s (CRCP) National Coral Reef Ecosystem Monitoring Program (NCREMP). With support from CRCP’s NCREMP, CCMA conducts the “Caribbean Coral Reef Ecosystem Monitoring project” (CREM) with goals to: (1) spatially characterize and monitor the distribution, abundance, and size of marine fauna associated with shallow water coral reef seascapes (mosaics of coral reefs, seagrasses, sand and mangroves); (2) relate this information to in situ fine-scale habitat data and the spatial distribution and diversity of habitat types using benthic habitat maps; (3) use this information to establish the knowledge base necessary for enacting management decisions in a spatial setting; (4) establish the efficacy of those management decisions; and (5) develop data collection and data management protocols. The monitoring effort in northeastern St. Croix was conducted through partnerships with the National Park Service (NPS) and the Virgin Islands Department of Planning and Natural Resources (VI-DPNR). The geographical focal point of the research is Buck Island Reef National Monument (BIRNM), a protected area originally established in 1961 and greatly expanded in 2001; however, the work also encompassed a large portion of the recently created St. Croix East End Marine Park (EEMP). Project funding is primarily provided by NOAA CRCP, CCMA and NPS. In recent decades, scientific and non-scientific observations have indicated that the structure and function of the coral reef ecosystem around northeastern St. Croix have been adversely impacted by a wide range of environmental stressors. The major stressors have included the mass Diadema die off in the early 1980s, a series of hurricanes beginning with Hurricane Hugo in 1989, overfishing, mass mortality of Acropora corals due to disease and several coral bleaching events, with the most severe mass bleaching episode in 2005. The area is also an important recreational resource supporting boating, snorkeling, diving and other water based activities. With so many potential threats to the marine ecosystem and a dramatic change in management strategy in 2003 when the park’s Interim Regulations (Presidential Proclamation No. 7392) established BIRNM as one of the first fully protected marine areas in NPS system, it became critical to identify existing marine fauna and their spatial distributions and temporal dynamics. This provides ecologically meaningful data to assess ecosystem condition, support decision making in spatial planning (including the evaluation of efficacy of current management strategies) and determine future information needs. The ultimate goal of the work is to better understand the coral reef ecosystems and to provide information toward protecting and enhancing coral reef ecosystems for the benefit of the system itself and to sustain the many goods and services that it offers society. This Technical Memorandum contains analysis of the first six years of fish survey data (2001-2006) and associated characterization of the benthos (1999-2006). The primary objectives were to quantify changes in fish species and assemblage diversity, abundance, biomass and size structure and to provide spatially explicit information on the distribution of key species or groups of species and to compare community structure inside (protected) versus outside (fished) areas of BIRNM. (PDF contains 100 pages)

    Assessing the impacts of experimental derelict fish traps in the U.S. Virgin Islands [Poster]

    Get PDF
    Fish traps are commonly used throughout the Caribbean to catch reef fish species and lobster and are the primary gear of choice for fishermen in the U.S. Virgin Islands. Once they are lost or abandoned they are referred to as derelict fish traps (DFTs)and a widespread concern exists that they contribute to ghostfishing. Ghostfishing occurs when derelict fishing gear continues to catch fish and induce mortality. Despite the public concerns that DFTs are an environmental threat, few studies have quantified the level of ghostfishing in the Caribbean. To address concerns from the fishing community and other marine stakeholders, this study provides the first experimental examination of ghostfishing impacts to fish and the potential economic impacts to fisheries in the U.S. Virgin Islands

    Dredging fundamentally reshapes the ecological significance of 3D terrain features for fish in estuarine seascapes

    Get PDF
    Context: Landscape modification alters the condition of ecosystems and the structure of terrain, with widespread impacts on biodiversity and ecosystem functioning. Seafloor dredging impacts a diversity of flora and fauna in many coastal landscapes, and these processes also transform three-dimensional terrain features. The potential ecological significance of these terrain changes in urban seascapes has, however, not been investigated. Objectives: We examined the effects of terrain variation on fish assemblages in 29 estuaries in eastern Australia, and tested whether dredging changes how fish associate with terrain features. Methods: We surveyed fish assemblages with baited remote underwater video stations and quantified terrain variation with nine complementary metrics (e.g. depth, aspect, curvature, slope, roughness), extracted from bathymetry maps created with multi-beam sonar. Results: Fish diversity and abundance were strongly linked to seafloor terrain in both natural and dredged estuaries, and were highest in shallow waters and near features with high curvature. Dredging, however, significantly altered the terrain of dredged estuaries and transformed the significance of terrain features for fish assemblages. Abundance and diversity switched from being correlated with lower roughness and steeper slopes in natural estuaries to being linked to features with higher roughness and gentler slopes in dredged estuaries. Conclusions: Contrasting fish-terrain relationships highlight previously unrecognised ecological impacts of dredging, but indicate that plasticity in terrain use might be characteristic of assemblages in urban landscapes. Incorporating terrain features into spatial conservation planning might help to improve management outcomes, but we suggest that different approaches would be needed in natural and modified landscapes

    Seafloor Terrain Shapes the Three-dimensional Nursery Value of Mangrove and Seagrass Habitats

    Get PDF
    Mangroves and seagrasses are important nurseries for many marine species, and this function is linked to the complexity and context of these habitats in coastal seascapes. It is also connected to bathymetric features that influence habitat availability, and the accessibility of refuge habitats, but the significance of terrain variation for nursery function is unknown. To test whether seafloor terrain influences nursery function, we surveyed fish assemblages from mangrove and seagrass habitats in 29 estuaries in eastern Australia with unbaited underwater cameras and quantified the surrounding three-dimensional terrain with a set of complementary surface metrics (that is, depth, aspect, curvature, slope, roughness) applied to sonar-derived bathymetric maps. Terrain metrics explained variability in assemblages in both mangroves and seagrasses, with differing effects for the entire fish assemblage and nursery species composition, and between habitats. Higher depth, plan curvature (concavity or convexity) and roughness (backscatter) were negatively correlated with abundance and diversity in mangroves and positively linked to abundance and diversity in seagrass. Mangrove nursery species (6 species) were most abundant in forests adjacent to flats with concave holes, rough substrates and low-moderate depths, whereas seagrass nursery species (3 species) were most abundant in meadows adjacent to deep channels with soft mounds and ledges. These findings indicate that seafloor terrain influences nursery function and demonstrate contrasting effects of terrain variation in mangroves and seagrass. We suggest that incorporating three-dimensional terrain into coastal conservation and restoration plans could help to improve outcomes for fisheries management, but contrasting strategies might be needed for different nursery habitats

    Quantum error rejection code with spontaneous parametric conversion

    Full text link
    We propose a linear optics scheme with SPDC process to test the fault tolerance property of quantum error correction code. To transmit an unknown qubit robustly through the noisy channel, one may first encode it into a certain quantum error correction code and then transmit it. The remote party decodes it and stores it. Sending a qubit in such a way can significantly reduces the error rate compared with directly sending the qubit itself. Here we show how to realize such a scheme by linear optics.Comment: To appear in Phys. Rev. A. 18 pages, 2 figure, minor erros corrected and more explanations added to increase the readabilit

    An integrated biochemical system for nitrate assimilation and nitric oxide detoxification in Bradyrhizobium japonicum

    Get PDF
    Rhizobia are recognized to establish N(2)-fixing symbiotic interactions with legume plants. Bradyrhizobium japonicum, the symbiont of soybeans, can denitrify and grow under free-living conditions with nitrate (NO(3)(−)) or nitrite (NO(2)(−)) as sole nitrogen source. Unlike related bacteria that assimilate NO(3)(−), genes encoding the assimilatory NO(3)(−) reductase (nasC) and NO(2)(−) reductase (nirA) in B. japonicum are located at distinct chromosomal loci. The nasC gene is located with genes encoding an ABC-type NO(3)(−) transporter, a major facilitator family NO(3)(−)/NO(2)(−) transporter (NarK), flavoprotein (Flp) and single-domain haemoglobin (termed Bjgb). However, nirA clusters with genes for a NO(3)(−)/NO(2)(−)-responsive regulator (NasS-NasT). In the present study, we demonstrate NasC and NirA are both key for NO(3)(−) assimilation and that growth with NO(3)(−), but not NO(2)(−) requires flp, implying Flp may function as electron donor to NasC. In addition, bjgb and flp encode a nitric oxide (NO) detoxification system that functions to mitigate cytotoxic NO formed as a by-product of NO(3)(−) assimilation. Additional experiments reveal NasT is required for NO(3)(−)-responsive expression of the narK-bjgb-flp-nasC transcriptional unit and the nirA gene and that NasS is also involved in the regulatory control of this novel bipartite assimilatory NO(3)(−)/NO(2)(−) reductase pathway
    corecore