158 research outputs found

    Anti-Inflammatory Actions of Vitamin K

    Get PDF
    Naphthoquinone compounds have received attention for their ability to regulate diseases from bacterial and parasite infections through to chronic human diseases. Inflammation is widely considered to be at the root of many chronic diseases. The reports of anti-inflammatory activity of naphthoquinones, including vitamin K1 (phylloquinone) and vitamin K2s (menaquinones), are of interest due to their very low toxicity. Most of the evidence for the anti-inflammatory mechanisms of vitamin K suggests a role in the inhibition of the cell signalling complex nuclear factor kappa-B (NF-ÎșB)

    A Computed Microtomography Method for Understanding Epiphyseal Growth Plate Fusion

    Get PDF
    The epiphyseal growth plate is a developmental region responsible for linear bone growth, in which chondrocytes undertake a tightly regulated series of biological processes. Concomitant with the cessation of growth and sexual maturation, the human growth plate undergoes progressive narrowing, and ultimately disappears. Despite the crucial role of this growth plate fusion ‘bridging’ event, the precise mechanisms by which it is governed are complex and yet to be established. Progress is likely hindered by the current methods for growth plate visualisation; these are invasive and largely rely on histological procedures. Here we describe our non-invasive method utilising synchrotron X-ray computed microtomography for the examination of growth plate bridging, which ultimately leads to its closure coincident with termination of further longitudinal bone growth. We then apply this method to a dataset obtained from a benchtop microcomputed tomography scanner to highlight its potential for wide usage. Furthermore, we conduct finite element modelling at the micron-scale to reveal the effects of growth plate bridging on local tissue mechanics. Employment of these 3D analyses of growth plate bone bridging is likely to advance our understanding of the physiological mechanisms that control growth plate fusion

    3D profiling of mouse epiphyses across ages reveals new potential imaging biomarkers of early spontaneous osteoarthritis

    Get PDF
    Worldwide research groups and funding bodies have highlighted the need for imaging biomarkers to predict osteoarthritis (OA) progression and treatment effectiveness. Changes in trabecular architecture, which can be detected with non-destructive high-resolution CT imaging, may reveal OA progression before apparent articular surface damage. Here, we analysed the tibial epiphyses of STR/Ort (OA-prone) and CBA (healthy, parental control) mice at different ages to characterise the effects of mouse age and strain on multiple bony parameters. We isolated epiphyseal components using a semi-automated method, and measured the total epiphyseal volume; cortical bone, trabecular bone and marrow space volumes; mean trabecular and cortical bone thicknesses; trabecular volume relative to cortical volume; trabecular volume relative to epiphyseal interior (trabecular BV/TV); and the trabecular degree of anisotropy. Using two-way ANOVA (significance level ≀0.05), we confirmed that all of these parameters change significantly with age, and that the two strains were significantly different in cortical and trabecular bone volumes, and trabecular degree of anisotropy. STR/Ort mice had higher cortical and trabecular volumes and a lower degree of anisotropy. As the two mouse strains reflect markedly divergent OA predispositions, these parameters have potential as bioimaging markers to monitor OA susceptibility and progression. Additionally, significant age/strain interaction effects were identified for total epiphyseal volume, marrow space volume and trabecular BV/TV. These interactions confirm that the two mouse strains have different epiphyseal growth patterns throughout life, some of which emerge prior to OA onset. Our findings not only propose valuable imaging biomarkers of OA, but also provide insight into ageing 3D epiphyseal architecture bone profiles and skeletal biology underlying the onset and development of age-related OA in STR/Ort mice

    Biofabrication of the osteochondral unit and its applications: Current and future directions for 3D bioprinting

    Get PDF
    Multiple prevalent diseases, such as osteoarthritis (OA), for which there is no cure or full understanding, affect the osteochondral unit; a complex interface tissue whose architecture, mechanical nature and physiological characteristics are still yet to be successfully reproduced in vitro. Although there have been multiple tissue engineering-based approaches to recapitulate the three dimensional (3D) structural complexity of the osteochondral unit, there are various aspects that still need to be improved. This review presents the different pre-requisites necessary to develop a human osteochondral unit construct and focuses on 3D bioprinting as a promising manufacturing technique. Examples of 3D bioprinted osteochondral tissues are reviewed, focusing on the most used bioinks, chosen cell types and growth factors. Further information regarding the applications of these 3D bioprinted tissues in the fields of disease modelling, drug testing and implantation is presented. Finally, special attention is given to the limitations that currently hold back these 3D bioprinted tissues from being used as models to investigate diseases such as OA. Information regarding improvements needed in bioink development, bioreactor use, vascularisation and inclusion of additional tissues to further complete an OA disease model, are presented. Overall, this review gives an overview of the evolution in 3D bioprinting of the osteochondral unit and its applications, as well as further illustrating limitations and improvements that could be performed explicitly for disease modelling

    Evaluation of a synthetic peptide-based bioink (PeptiInk Alpha 1) for in vitro 3D bioprinting of cartilage tissue models

    Get PDF
    Cartilage pathology in human disease is poorly understood and requires further research. Various attempts have been made to study cartilage pathologies using in vitro human cartilage models as an alternative for preclinical research. Three-dimensional (3D) bioprinting is a technique that has been used to 3D-bioprint cartilage tissue models in vitro using animal-derived materials such as gelatine or hyaluronan, which present challenges in terms of scalability, reproducibility, and ethical concerns. We present an assessment of synthetic self-assembling peptides as bioinks for bioprinted human in vitro cartilage models. Primary human chondrocytes were mixed with PeptiInk Alpha 1, 3D-bioprinted and cultured for 14 days, and compared with 3D chondrocyte pellet controls. Cell viability was assessed through LIVE/DEAD assays and DNA quantification. High cell viability was observed in the PeptiInk culture, while a fast decrease in DNA levels was observed in the 3D pellet control. Histological evaluation using hematoxylin and eosin staining and immunofluorescence labeling for SOX-9, collagen type II, and aggrecan showed a homogeneous cell distribution in the 3D-bioprinted PeptiInks as well as high expression of chondrogenic markers in both control and PeptiInk cultures. mRNA expression levels assessed by - qRT-PCR (quantitative real time-polymerase chain reaction) confirmed chondrogenic cell behavior. These data showed promise in the potential use of PeptiInk Alpha 1 as a bioprintable manufacturing material for human cartilage in vitro models

    Spatial links between subchondral bone architectural features and cartilage degeneration in osteoarthritic joints

    Get PDF
    Early diagnosis of osteoarthritis (OA), before the onset of irreversible changes is crucial for understanding the disease process and identifying potential disease-modifying treatments from the earliest stage. OA is a whole joint disease and affects both cartilage and the underlying subchondral bone. However, spatial relationships between cartilage lesion severity (CLS) and microstructural changes in subchondral plate and trabecular bone remain elusive. Herein, we collected femoral heads from hip arthroplasty for primary osteoarthritis (n = 7) and femoral neck fracture (n = 6; non-OA controls) cases. Samples were regionally assessed for cartilage lesions by visual inspection using Outerbridge classification and entire femoral heads were micro-CT scanned. Scans of each femoral head were divided into 4 quadrants followed by morphometric analysis of subchondral plate and trabecular bone in each quadrant. Principal component analysis (PCA), a data reduction method, was employed to assess differences between OA and non-OA samples, and spatial relationship between CLS and subchondral bone changes. Mapping of the trabecular bone microstructure in OA patients with low CLS revealed trabecular organisation resembling non-OA patients, whereas clear differences were identifiable in subchondral plate architecture. The OA-related changes in subchondral plate architecture were summarised in the first principle component (PC1) which correlated with CLS in all quadrants, whilst by comparison such associations in trabecular bone were most prominent in the higher weight-bearing regions of the femoral head. Greater articular cartilage deterioration in OA was regionally-linked with lower BV/TV, TMD and thickness, and greater BS/BV and porosity in the subchondral plate; and with thinner, less separated trabeculae with greater TMD and BS/BV in the trabecular bone. Our findings suggest that impairment of subchondral bone microstructure in early stage of OA is more readily discernible in the cortical plate and that morphological characterisation of the femoral head bone microstructure may allow for earlier OA diagnosis and monitoring of progression

    Ex vivo determination of bone tissue strains for an in vivo mouse tibial loading model

    Get PDF
    AbstractPrevious studies introduced the digital image correlation (DIC) as a viable technique for measuring bone strain during loading. In this study, we investigated the sensitivity of a DIC system in determining surface strains in a mouse tibia while loaded in compression through the knee joint. Specifically, we examined the effect of speckle distribution, facet size and overlap, initial vertical alignment of the bone into the loading cups, rotation with respect to cameras, and ex vivo loading configurations on the strain contour maps measured with a DIC system.We loaded tibiae of C57BL/6 mice (12 and 18 weeks old male) up to 12N at 8N/min. Images of speckles on the bone surface were recorded at 1N intervals and DIC was used to compute strains. Results showed that speckles must have the correct size and density with respect to the facet size of choice for the strain distribution to be computed and reproducible. Initial alignment of the bone within the loading cups does not influence the strain distribution measured during peak loading, but bones must be placed in front of the camera with the same orientation in order for strains to be comparable. Finally, the ex vivo loading configurations with the tibia attached to the entire mouse, or to the femur and foot, or only to the foot, showed different strain contour maps.This work provides a better understanding of parameters affecting full field strain measurements from DIC in ex vivo murine tibial loading tests

    Dmp1 Promoter-Driven Diphtheria Toxin Receptor Transgene Expression Directs Unforeseen Effects in Multiple Tissues

    Get PDF
    Mice harbouring a dentin matrix protein 1 (Dmp1) promoter-driven human diphtheria toxin (DT) receptor (HDTR) transgene (Tg) have recently been used to attain targeted ablation of osteocytes by diphtheria toxin (DT) treatment in order to define osteocyte function. Use of these Tg mice has asserted mechano- and novel paracrine regulatory osteocyte functions. To explore osteocyte roles fully, we sought to confirm the selectivity of DT effects in these transgenic mice. However, our findings revealed incomplete DT-induced osteocyte ablation, prevalent HDTR misexpression, as well as more prominent histopathological DT-induced changes in multiple organs in Tg than in wild-type (WT) littermate mice. Mechanistic evidence for DT action, via prominent regulation of phosphorylation status of elongation factor-2 (EF-2), was also found in many non-skeletal tissues in Tg mice; indicative of direct “off-target” DT action. Finally, very rapid deterioration in health and welfare status in response to DT treatment was observed in these Tg when compared to WT control mice. Together, these data lead us to conclude that alternative models for osteocyte ablation should be sought and caution be exercised when drawing conclusions from experiments using these Tg mice alone
    • 

    corecore