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Abstract: Mice harbouring a dentin matrix protein 1 (Dmp1) promoter-driven human diphtheria
toxin (DT) receptor (HDTR) transgene (Tg) have recently been used to attain targeted ablation of
osteocytes by diphtheria toxin (DT) treatment in order to define osteocyte function. Use of these Tg
mice has asserted mechano- and novel paracrine regulatory osteocyte functions. To explore osteocyte
roles fully, we sought to confirm the selectivity of DT effects in these transgenic mice. However,
our findings revealed incomplete DT-induced osteocyte ablation, prevalent HDTR misexpression,
as well as more prominent histopathological DT-induced changes in multiple organs in Tg than in
wild-type (WT) littermate mice. Mechanistic evidence for DT action, via prominent regulation of
phosphorylation status of elongation factor-2 (EF-2), was also found in many non-skeletal tissues in
Tg mice; indicative of direct “off-target” DT action. Finally, very rapid deterioration in health and
welfare status in response to DT treatment was observed in these Tg when compared to WT control
mice. Together, these data lead us to conclude that alternative models for osteocyte ablation should
be sought and caution be exercised when drawing conclusions from experiments using these Tg
mice alone.

Keywords: osteocyte; diphtheria toxin receptor; bone

1. Introduction

Osteocytes, the cells trapped in mineralized bone matrix, are the most abundant cell type in
the skeleton; comprising up to 95% of total bone cells. They originate from osteoblasts and during
their osteoblast-to-osteocyte transition develop cytoplasmic processes that keep them connected to
each other, to other osteoblasts, osteoclasts and to cells in marrow [1,2]. Osteocytes are very difficult
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to study because of their anatomical location within bone, and many of their proposed biological
roles remain, therefore, incompletely defined and somewhat controversial. Their abundance, location
and connectivity has meant that they have long been considered to serve a crucial sensory and
regulatory role in mechanical adaptation and control of bone remodelling, and indirect evidence for
their regulatory functions has grown [1,3–9].

The importance of osteocytes is also supported by their persistence within bone matrix, which
indicates their role, at the very least, in regulating both initial osteoid mineralization and later bone
mineral maturation phases [10,11]. Osteocytes are the primary source of sclerostin, the product of
Sost gene, acting as an inhibitor of bone formation and in osteoblast regulation [12]. Recently, other
provocative systemic functions beyond mechanotransduction have been proposed for osteocytes; it
is thought that osteocytes regulate mineral homeostasis by secretion of fibroblast growth factor 23,
which serves an endocrine role to regulate kidney phosphate reabsorption [1,11,13]. It has also been
proposed that osteocytes control osteoclast-mediated resorption via their secretion osteoprotegerin
and of the receptor activator of nuclear factor κB ligand (RANKL) [14–17].

This breadth and depth of proposed osteocyte roles has now been significantly extended in an
intriguing set of studies using transgenic (Tg) (Dmp1-HDTR) mice. These purport to provide direct
in vivo evidence for the physiological contribution of osteocytes to multiple skeletal and extra-skeletal
functions. These mice express transgenic human diphtheria toxin receptor (the heparin-binding
epidermal growth factor; HDTR) driven by a 10-kb dentin matrix protein (Dmp1) promoter fragment in
order to facilitate selective osteocyte ablation upon diphtheria toxin (DT) injection (Tatsumi et al., 2007).
Using this Tg mouse model, it has been reported that 70%–80% of osteocytes can be ablated, eight
days after a single 50-µg/kg DT injection. Studies exploiting this reported ablation have been
used to support roles in mechanotransduction and extensive additional systemic paracrine roles for
osteocytes [18–20]. These include: (i) regulation of fat metabolism, through an influence of osteocytes
upon the hypothalamus; (ii) modulation of primary lymphoid organs, through osteocyte-mediated
support of B and T cell maturation via a maintenance of a lymphoid-specific stromal cell pool in bone
marrow [20]; and (iii) control of mobilization from the hematopoietic stem cell niche (HSC) in bone
marrow [19].

The 10-kb, as well as an 8-kb Dmp1 promoter fragment [21,22] have also been used to
overexpress genes of interest or Cre-recombinase for conditional deletion studies using the Cre-loxP
system [8,17,23,24], and interpretation of these data is clearly totally reliant upon the selective
targeting of osteocytes and the lack of any alternative direct actions in other tissue and organs.
Use of Tg (Dmp1-HDTR) mice is additionally reliant on the attainment of a highly cell-specific
ensuing Dmp1-driven DT sensitivity. This study examines more closely the reliance upon this highly
osteocyte-selective targeting of the Dmp1-HDTR transgene and the specificity of the resultant sensitivity
to DT upon which the use of these mice as a model for induction of osteocyte-less bone in vivo is based.

2. Results

2.1. DT Treatment Leads to Changes in Bone Formation Despite Inefficient Ablation of Osteocytes

Previous studies have described resistance to unloading-induced bone loss in Tg mice wherein
significant levels of selective, DT-inducible osteocyte ablation were observed. Our initial studies sought
to exploit this selective ablation to determine whether osteocytes also regulated physiological levels of
cortical bone formation in freely-moving mice. Consistent with a regulatory role for osteocytes, we
found that DT treatment also modified basal bone formation rate, as assessed by histomorphometry,
with a significant reduction in bone accrual on the endosteal, but not the periosteal surface of the tibial
midshaft in Tg mice (Figure 1A–F). Further examination of osteoclast activity by tartrate resistant acid
phosphatase (TRAP) staining (Figure 1G–I) revealed that a single DT treatment did not significantly
enhance TRAP activation in Tg (Figure 1G) compared to wild-type (WT) littermates (Figure 1H).
Consistent with previous data [18], single DT treatment also produced changes in marrow composition
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in Tg (Figure 1J,K), but not WT littermates (Figure 1M,N), with marked DT-induced blood vessel
dilation and significant increases in levels of sinusoidal congestion. Multiple, daily DT injections (five
days) produced more marked sinusoidal dilation and more overt evidence of osteocyte ablation in Tg
mice that was lacking in DT-treated WT mice (Figure 1L,P); it is noteworthy that these reduced levels
of bone formation occurred over a time-course during which DT-induced histological marrow changes
had occurred. Moreover, evaluation of DT-induced apoptosis by terminal deoxynucleotidyl transferase
dUTP nick end labelling (TUNEL) revealed that osteocyte apoptosis was not significantly upregulated
in Tg mice compared to WT littermates in response to DT treatment. Unfortunately, the number of
TUNEL-positive cells was too low to quantify. In contrast to the bone tissue, many apoptotic cells
were observed in the bone marrow of these mice (Figure 1Q–R). Furthermore, the strong labelling of
cells in the positive control sections demonstrates the reliability of the TUNEL technique (Figure 1T).
In addition, no TUNEL-positive cells were observed in the negative control sections (Figure 1S).
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Figure 1. Diphtheria toxin (DT) injection leads to changes in bone formation despite inefficient 
ablation of osteocytes. Calcein double labelling (five-day interval) reveals robust levels of bone 
formation in vehicle-treated transgenic (Tg) (A) and WT mice (C) and diminished levels in only Tg 
(B), but not WT mice (D) five days after DT treatment; these changes were seen in the endosteal, but 
not the periosteal surfaces (E,F). White arrows indicate the inner and outer of two labels. Statistical 
comparisons: ** p < 0.05 vehicle and DT treated. TRAP staining for osteoclast activity for single  
DT-treated Tg (G; n = 3) and WT littermates (H; n = 3) (arrows indicate TRAP-positive osteoclasts) 
showed no significate differences between the two groups (I). Tg (J–L n = 4), but not WT (M–O; n = 4) 
mouse bones show marrow pathology, with marked congestion and distention of marrow sinusoidal 
blood vessels (*) at seven days after single DT (K) and more severe changes after five consecutive days 
of DT treatment (L); no comparable DT-induced changes in marrow composition were seen in WT 
mice (N,O). Significant osteocyte ablation (<30% empty lacunae; shown by arrowhead ( ), viable 
osteocyte; shown by arrow ( ), empty lacuna) was only observed in Tg mice treated with DT for 
five consecutive days (M) and only low levels (<10%) in WT and Tg mice after single DT treatment 
(P). Statistical comparisons: * p < 0.05 WT and Tg. Assessment of DT-induced apoptosis by TUNEL 
staining after single DT treatment in cortical bone of Tg (Q) and WT (R) revealed a very low number 
of apoptosis-positive osteocytes (arrow); arrowheads indicate negative cells. White-dotted boxes 
show a magnification of similar regions to better visualise the presence or lack of apoptotic cells.  
Negative (S) and positive (T) controls demonstrate a lack of staining in negative and many stained 
cells in positive control. Scale bar, 200 µm in the full overview images and 50 µm in the insets. Graphs 
represent the means ± SEM; ns = not significant. 

These data suggest that DT modifies bone-forming osteoblasts and/or their progenitor marrow 
recruitment in mice harbouring the Tg transgene and that this may be attributable to DT-induced 
ablation of osteocytes. However, in disagreement with this interpretation, we find that the numbers 
of ablated osteocytes were not extensive following a single DT injection in Tg and WT mice, with 
<10% dead osteocytes detected in Tg compared to <6% in WT littermates; more robust ablation was 
only attainable in Tg mice after multiple DT doses (<30% dead osteocytes or empty lacunae;  
Figure 1P). This was further confirmed by TUNEL staining, indicating that DT treatment does not 
lead to significant ablation of osteocytes as reported originally [18]. These data suggest that DT 
influences marrow composition and perhaps bone formation without the induction of significant 
osteocyte ablation, increasing osteoclast activity or the elevation of osteocyte apoptosis, but that  
DT-related modifications in bone formation are nonetheless reliant on HDTR expression driven via 
the Dmp1 promoter. 

Figure 1. Diphtheria toxin (DT) injection leads to changes in bone formation despite inefficient ablation
of osteocytes. Calcein double labelling (five-day interval) reveals robust levels of bone formation
in vehicle-treated transgenic (Tg) (A) and WT mice (C) and diminished levels in only Tg (B), but
not WT mice (D) five days after DT treatment; these changes were seen in the endosteal, but not
the periosteal surfaces (E,F). White arrows indicate the inner and outer of two labels. Statistical
comparisons: ** p < 0.05 vehicle and DT treated. TRAP staining for osteoclast activity for single
DT-treated Tg (G; n = 3) and WT littermates (H; n = 3) (arrows indicate TRAP-positive osteoclasts)
showed no significate differences between the two groups (I). Tg (J–L n = 4), but not WT (M–O; n = 4)
mouse bones show marrow pathology, with marked congestion and distention of marrow sinusoidal
blood vessels (*) at seven days after single DT (K) and more severe changes after five consecutive days
of DT treatment (L); no comparable DT-induced changes in marrow composition were seen in WT
mice (N,O). Significant osteocyte ablation (<30% empty lacunae; shown by arrowhead (
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These data suggest that DT modifies bone-forming osteoblasts and/or their progenitor marrow
recruitment in mice harbouring the Tg transgene and that this may be attributable to DT-induced
ablation of osteocytes. However, in disagreement with this interpretation, we find that the numbers of
ablated osteocytes were not extensive following a single DT injection in Tg and WT mice, with <10%
dead osteocytes detected in Tg compared to <6% in WT littermates; more robust ablation was only
attainable in Tg mice after multiple DT doses (<30% dead osteocytes or empty lacunae; Figure 1P). This
was further confirmed by TUNEL staining, indicating that DT treatment does not lead to significant
ablation of osteocytes as reported originally [18]. These data suggest that DT influences marrow
composition and perhaps bone formation without the induction of significant osteocyte ablation,
increasing osteoclast activity or the elevation of osteocyte apoptosis, but that DT-related modifications
in bone formation are nonetheless reliant on HDTR expression driven via the Dmp1 promoter.
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2.2. Transgenic Mice Exhibit Generalized Adverse Health Status with DT Treatment

The rapid onset of these DT-induced bone marrow changes without marked osteocyte ablation led
us to explore whether Tg mice showed generalised signs of ill-health post-DT injection. We undertook
formal evaluation of mouse welfare status by measuring several well-known health indicators after
single DT treatment [25,26] (Guide for the Care and Use of Laboratory Animals, National Research
Council, 2010). This indicates that Tg mice, not WT littermates, show clear symptoms consistent with
significant ill-health, as early as three days after DT treatment, with a hunched back, bulbous nose,
lack of appetite, pain vocalization behaviour and loss of weight (Figure 2A–H). The severity of these
signs worsened by Day 7 post-DT, at which point mice had lost more than 20% of their original body
weight, and the experiment, under UK Home Office regulations, had to be terminated (Figure 2A).
These signs indicate dramatic DT effects on health status and suggest that deterioration is due to
targeting of multiple organs in Tg mice.
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Figure 2. Transgenic mice exhibit generalized adverse health status with DT treatment. WT, but more
markedly Tg mice showed substantial weight loss. This was apparent within two days after a single DT
injection in Tg mice (A), which worsens to reach over 20% of starting body weight by Day 7. Tg mice
also developed signs of distress and pain during the six-day period of DT treatment. These signs were
manifested by a hunched back as a sign of distress (B). The change in gait, which might be due to
pain (C), reduced activity (D), loud vocalisation (E), increased respiratory rate (F), deteriorated body
condition (G) and deterioration of coat condition (H), which suggests lack of grooming and personal
care. These signs suggest that DT impacts severely on the welfare particularly of treated Tg mice.
Graphs represent the means ± SEM. Statistical comparisons: * denotes p < 0.05 between DT-treated WT
and Tg mice; ns = not significant
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2.3. Multiple Tissues Show Misexpression of Dmp1-Driven HDTR mRNA and Broad Expression of Dmp1

To explore the specificity of transgenic 10-kb Dmp1-driven HDTR (Figure 3A: transgenic construct)
expression in Tg mice, we evaluated HDTR mRNA, as well as protein expression in multiple WT and
Tg mouse tissues. Semi-quantitative PCR showed that the HDTR transgene was expressed in a wide
range of tissues, such as liver, kidney, spleen, heart, marrow, lung, as well as bone in Tg, but not WT
littermates (Figure 3C). This pattern of HDTR mRNA expression did not, however, match accordingly
with endogenous Dmp1 mRNA expression patterns, which were restricted to only brain and bone
tissues in Tg and WT mice, suggesting Dmp1-independent HDTR transgene expression mechanisms in
multiple tissues. Both HDTR and Dmp1 PCR products were validated by sequencing and restriction
digestion [27].

We also further investigated the expression level of HDTR by quantitative PCR (qPCR) to
determine whether these correlate with the histopathological impact of DT treatment. This qPCR
analysis confirmed that HDTR showed a wide tissue distribution with the highest levels of mRNA
expression in brain, somewhat less so in heart, spleen, thymus and bone and very low levels in kidney
and liver (Figure 3C).

Further examination of HDTR protein expression was sought using immunohistochemical
labelling for HDTR in selected tissues. Osteocytes and osteoblasts in bone (Figure 3D), as well
as bone marrow and sinusoidal blood vessel cells (Figure 3E), kidney tubules (Figure 3F) and lung
alveolar wall (Figure 3G) were all labelled positively for HDTR in Tg mice, but not WT littermates
(Figure 3H–K). This suggests that cells in multiple tissues express HDTR and that the deleterious
effects of DT might not be limited to bone or to tissues expressing endogenous Dmp1.
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Figure 3. Multiple tissues show the misexpression of Dmp1-driven HDTR mRNA and broad 
expression of Dmp1. (A) A 9.6-kb transgenic cassette (50-flanking region, exon 1, intron 1 and part of 
exon 2 of the mouse Dmp1 gene) was fused to human DTR cDNA using a toxin receptor-mediated 
cell knockout system and injected into fertilized egg pronucleus.  Blue arrow indicates direction of 
transcription [18,28]. Semi-quantitative mRNA analysis reveals Dmp1 mRNA expression in only bone 
and brain and a lack of selective HDTR mRNA expression, with the distribution in almost all tissues 
examined from Tg, but not in WT mice (B), respectively. Quantitative PCR of HDTR mRNA transgene 
expression analysis revealed that HDTR has a broad expression in multiple tissues (C). Samples were 
normalised to GAPDH. Immunohistochemical staining against HDTR protein in selected tissues 
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2.4. Pathological Changes Are Evident in Multiple Tissues Following DT Injection

Based on ill-health post-DT and HDTR misexpression patterns, we examined whether DT
administration produced pathological changes in non-skeletal tissues, likely independently of osteocyte
function and endogenous Dmp1 promoter activity in Tg mice. Histopathological assessment revealed
that DT-induced changes included more severe lymphoid atrophy in the spleen (Figure 4A–D) and
thymus (Figure 4E,F) in Tg than WT mice (Figure 4G,H).
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Figure 4. DT induces severe atrophy in primary lymphoid organs. H & E staining of spleens from
Tg (A,B) and WT (C,D) mice shows atrophy and diminished white pulp (*) seven days after single DT
treatment in Tg (B), but less so in WT (D) mice; scale bar 250 µm. (E,F) Tg exhibit more severe thymic
atrophy than WT (G,H) mice seven days post-DT. Scale bar 200 µm.

Acute tubular necrosis was seen in the kidney in Tg mice by three days of DT treatment; similar,
but less severe changes were observed in DT-treated WT littermates (Figure 5A,B,D,E). The kidney
lesions appeared to exhibit rapid reversibility with regenerative tubules evident seven days after
a single DT treatment (Figure 5C,F). Despite an absence of very high osteocyte ablation levels, we
nonetheless observed significant increases in serum calcium in DT-treated Tg and WT mice (Figure 5G;
p ≤ 0.01 and p ≤ 0.05, respectively). Furthermore, phosphorus levels were increased in both Tg and
WT mice in response to DT treatment, but failed to reach statistical significance in Tg mice compared
with vehicle-treated mice (Figure 5H; p ≤ 0.05). Moreover, it was noted that basal circulating levels of
both calcium and phosphorous were higher in Tg compared to WT littermate mice, which could be
attributed to reduced renal function (Figure 5G–H; p ≤ 0.05). Together, these data indicate that DT
treatment produces deleterious effects in multiple tissues in both Tg and WT littermates, suggesting
that any contribution of osteocyte ablation is likely complicated in these mice by such “off-target”
changes. In addition to kidney and lymphoid tissues, we also evaluated histopathological changes in
liver, muscle, brain and lung, all of which appeared histologically normal in both WT and Tg mice.
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2.5. Dephosphorylation of EF-2 Reveals Direct DT Toxicity in Multiple Tissues in Tg Mice

To examine whether pathological changes in extra-skeletal tissues are due to direct DT toxicity,
we exploited its known mechanism of action to track its cellular effects. DT, which separates into
two fragments, containing a catalytic domain (21.1 kDa) and the receptor and transmembrane domain
(41.2 kDa) [29–31], binds to cell surface DTR, causing membrane internalization and the formation
of lysosomal vesicles in which the DT transmembrane domain forms a pore. This pore permits
translocation of the catalytic DT domain into the cytosol [31,32] where it promotes NAD+-dependent
ADP ribosylation of elongation factor-2 (EF-2), which leads to inhibition of protein synthesis and
apoptosis [31,33]. Accordingly, dephosphorylation of EF-2 is used to identify tissues in which DT is
effectively translocated into the nucleus, and reduced levels of phosphorylated EF-2 (pEF-2) in tissue
can also be monitored to signpost direct effects of DT toxicity.
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Examination of pEF-2 (and total EF-2) levels in diverse tissues by immunoblotting showed that DT
treatment of Tg leads to reduced pEF-2 levels (EF-2 inactivation) in the histologically-affected tissues,
such as spleen and kidney; thus indicating that DT dephosphorylates EF-2, seven days post-treatment,
to directly inactivate EF-2 in vivo in a wide range of tissues in these Tg mice (Figure 6). DT-induced
declines in measured pEF-2 levels were not observed in bone samples (Figure 6A,B). The reduction of
pEF-2 after DT treatment in Tg mice suggests that multiple tissues are directly targeted by DT, likely
independently of osteocytes.
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within 48 hours of administration in Tg mice. Compliance with U.K. Home Office welfare guidelines 
required that we culled DT-dosed Tg mice by Day 7 when dosed once and by Day 3, when dosed 
daily. The main criterion for culling was a greater than 20% loss in body weight, with additional 
lowering of body temperature, staggered gait, hunching, loss of condition and vocalization. This 

Figure 6. Dephosphorylation of EF-2 reveals direct DT toxicity in multiple tissues in Tg mice. Bones of
DT-treated Tg and WT mice show equivalent pEF-2 levels to control mice seven days post DT treatment
(A: blots; B: quantification), which suggest minimal effects in bone. In kidney, spleen, lung and liver,
there is a significantly lower pEF-2 level indicative of direct targeting of these tissues by DT. In addition,
muscle and heart also show non-significant changes in pEF-2 levels compared to control mice seven
days post treatment. (A) Representative image of one out of four; (B) quantification of all groups, n = 4.
* p < 0.05 and ** p < 0.01 compared with vehicle treated Tg mice.

3. Discussion

Our data provide a clear demonstration of inefficient osteocyte ablation and HDTR misexpression,
EF-2 inactivation and tissue pathology in several organs, as well as clear ill-health within days of DT
treatment in mice with a 10-kb Dmp1-driven HDTR transgene. These data indicate that conclusions
regarding osteocyte function should be viewed with prudence when based solely on this model.
They question the use of these Tg mice as a reliable model for DT-inducible, specific osteocyte ablation,
as they show direct downstream DTR-mediated EF-2 inactivation in multiple tissues.

A single DT dose (50 µg/kg), as used by Tatsumi et al. (2007), was reported to generate >80% of
osteocyte death [18]. In contrast, we found this regimen to produce only minimal levels of osteocyte
ablation. Our attempt to emulate the high osteocyte ablation levels necessitated the deployment of
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multiple DT doses. This, however, only highlighted the clear signs of illness, discomfort and pain
within 48 hours of administration in Tg mice. Compliance with UK Home Office welfare guidelines
required that we culled DT-dosed Tg mice by Day 7 when dosed once and by Day 3, when dosed daily.
The main criterion for culling was a greater than 20% loss in body weight, with additional lowering of
body temperature, staggered gait, hunching, loss of condition and vocalization. This severely limits
the scope to use this model and likely complicates conclusions drawn concerning the physiological
role of osteocytes both in regulating bone and non-skeletal tissues.

Further studies with these Tg mice have shown that osteocyte networks are disrupted by 20 [20]
and 50 µg/kg DT [19]. These studies have attributed system-wide endocrine roles to osteocytes.
Although our data confirm some aspects of these previous findings, we nonetheless find complex
extra-skeletal changes, unlikely attributable to any selective effect of DT upon osteocyte survival.
An alternative view is that osteocytes serve even more widespread and acute roles in maintaining
health status and that these are manifest despite the low levels of osteocyte ablation we report herein.
For example, we report that DT-induced marrow changes resembled closely those changes observed
previously in Tg mice [20]. Despite this, our studies suggest that these widespread changes are instead,
direct, off-target DT effects. Indeed, bone marrow in Tg mice is positive for HDTR expression in
the absence of Dmp1 expression. This may explain the sensitivity to DT-induced changes in marrow
composition, which may, in turn, underpin later disruption of bone formation on the endosteal surface.
Absence of any DT-induced modification in periosteal bone formation is perhaps consistent with this
possibility. The observed dilatation of sinusoids and lowering of bone formation by DT treatment in
Tg mice, but not WT littermates, might also be consistent with DT-mediated targeting of local stromal
cell and osteoblast progenitors.

Our methods show few apoptotic osteocytes in DT-treated Tg mice (Figure 1Q), but none in the
bones of WT mice injected with DT (Figure 1R), making quantification or statistical analysis of these
data unwarranted. The reliability of our TUNEL technique is nonetheless demonstrated by strong
labelling in almost all cells following DNAase I-treatment and by the lack of labelling in negative
control sections incubated in the absence of transferase (Figure 1S,T). In addition, our findings indicate
that both spleen and kidney in Tg mice are also positive for HDTR and show DT-related decreases in
pEF-2 levels. Cross-tissue gene expression analysis of the HDTR transgene reveals misexpression in
Tg, but not WT mice in a wide range of tissues. This is consistent with the extent of pathology in the
affected tissues. Furthermore, whilst mice are naturally more resistant to DT than humans, it remains
possible that the principle of using DT treatment to target only transgenically-expressed DTR in mouse
models is perhaps questionable. We consider that the investigations into the endogenous sensitivity
of WT mouse tissues to DT are beyond the scope of our present study. In a study investigating the
effect of DT lethal dose on resistant mice, the authors reported that mice do not exhibit the same
impaired cardiac function as humans and guinea pigs in response to DT administration. This study
also found, however, that in mice that had received 2000× the minimum lethal dose for guinea pigs
(0.06 µg per 250 g) that kidney and skeletal muscle were the most affected tissues; interestingly, with
normal function in cardiac muscle suggesting different tissue sensitivity to DT [34]. This observation
was also applicable to the pEF-2 reduction level where tissues like spleen, kidney and liver showed
direct evidence of DT toxicity by exhibiting a reduction of pEF-2 following DT treatment. However,
lung showed a significant reduction of pEF-2 without evidence of histopathology, which highlights
the difference of tissue sensitivities. Clearly, these effects might be highly dependent on species, but
it nonetheless appears to suggest that some tissues are naturally more sensitive to DT than others.
On this basis, we conclude that pathological changes in these tissues are likely due to direct action of
DT rather than an indirect consequence of osteocyte ablation.

The value of these Tg mice and any DT-based induction of cell death using promoter-based
transgene delivery is contingent upon both the specificity of transgene expression in the target tissue
and the lack of any DT effects in a non-transgene-dependent manner. The extra-skeletal effects of
DT in these Tg mice may arise due to several factors, including the non-specificity of the 10-kb



Int. J. Mol. Sci. 2017, 18, 29 12 of 18

Dmp1 promoter fragment and/or misexpression of DTR in non-targeted tissues. Herein, we find
that endogenous Dmp1 expression is primarily detected in bone and brain. Indeed, previous studies
reported that Dmp1 is expressed primarily in bone, but also in submandibular salivary gland, kidney
and brain [35–38]. The HDTR transgene is, however, detected in multiple tissues. This agrees with
previous studies reporting the misexpression of DTR in similar DT-based transgenic models [39–41].
Furthermore, Jung et al. (2002) and Probst et al. (2005) described the limitations of HDTR-Tg mice,
including promiscuous DTR expression, which causes mouse death after repeated DT injection [42,43].
The multitude of changes including histopathological effects in several of these and other organs in
DT-treated Tg mice, including spleen, kidney, thymus and bone marrow, is therefore more likely due to
wide and non-targeted expression of HDTR.

We also observed higher basal levels of both serum calcium and phosphorous in Tg compared
with WT mice, which may be highly illuminating. These data suggest that Dmp1 promoter-driven
expression of transgenic HDTR (also known as heparin-binding epidermal growth factor (HB-EGF)),
under untreated basal conditions, creates aberrant calcium and phosphate metabolism by interfering
with endogenous homeostasis in either the skeleton and/or likely major regulating of the parathyroid
gland, kidney and gastrointestinal (GI) systems. We speculate that transgenic overexpression
of HB-EGF (HDTR) is sufficient to modify circulating calcium and phosphorous levels. This is
consistent with the neutralization of de novo paracrine activation of glomerular epithelial cells by
HB-EGF or EGF receptor antagonists to limit renal failure in immune-mediated vasculitis [44]. It is
also in agreement with the role of juxtacrine HB-EGF receptor activation by membrane-anchored
HB-EGF in regulating transepithelial renal resistance [45] and with the identification of HB-EGF
receptor pathway inhibition as a potential target for anti-hypercalcaemic therapy [46]. Furthermore,
Yano et al. (2004) found that calcium-sensing receptor-mediated HB-EGF receptor transactivation
results in increased PTHrP secretion in PC-3 human prostate cancer cells, blockable by prior incubation
with an antihuman HB-EGF antibody [47]. Together, these data show roles for the HB-EGF receptor
(HDTR) in calcium homeostasis and suggest that its transgenic overexpression, without DT treatment,
is sufficient with activation via alternative ligands to dysregulate basal serum calcium/phosphate
levels. Future studies that we consider to be beyond the scope of this present study may, for example,
measure 1,25-Dihydroxyvitamin D3 (VitD3), parathyroid hormone (PTH) and calcitonin levels to help
decipher these mechanisms.

4. Materials and Methods

4.1. Animal Model

The Tg mouse model expressing HDTR driven by the 10-kb Dmp1 promoter was generated by
Tatsumi et al., as described previously [18]. Eight-week-old Tg mice were purchased from Riken Japan.
To distinguish between Tg and WT littermates, genotyping was carried out on ear biopsies using
direct PCR lysis reagent (Viagen Biotech Inc., Los Angeles, CA, USA), and DNA was analysed by
strand PCR. Mice were raised under standard laboratory conditions and experiments were conducted
in compliance with the ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines
for reporting. Briefly, mice were housed up to 4 per cage in polypropylene cages with wood chip
and paper bedding and provided standard mouse chow and water ad libitum throughout the study.
Weaners up to 8 weeks of age were fed a standard rodent breeding diet and thereafter a standard
rodent maintenance diet (Special Diet Services, South Witham, UK). All procedures complied with and
were undertaken under the Animals Scientific Procedures Act by authorisation of a Project Licence
granted by the UK Home Office (Awarded on 24 April 2014) with the approval of the Royal Veterinary
College’s Ethics and Welfare Committee (London, UK).
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4.2. Diphtheria Toxin Administration

Diphtheria toxin (Sigma; Poole, Dorset, UK) was dissolved in sterile phosphate-buffered saline
(PBS, used in vehicle-treated mice) and used to treat both Tg and respective WT littermate control mice
in three different dosing protocols. In the first protocol, mice received a single 50 µg/kg intra-peritoneal
(IP) dose of DT on each of 5 consecutive days and culled 8 days after the first injection. In the second
protocol, mice were culled before or 2, 3, 4, 5 and 7 days after receiving a single 50 µg/kg IP dose of
DT, and in the third group (Day 0), mice did not receive DT treatment and served as baseline controls.
Some mice were DT treated and calcein (5 mg/kg) (Sigma) double-labelled.

4.3. Calcium and Phosphorus Measurements

Calcium and phosphorus levels were measured in the serum of 4 groups of 10-week-old male
mice (Groups 1 and 2 contained WT, and Group 3 and 4 were Tg mice). WT mice (Groups 1 and 2) were
treated by intraperitoneal administration with either: (1) phosphate-buffered saline (PBS) (untreated
WT (n = 3)) or (2) 50 µg/kg DT (n = 6) (ref D0564, Sigma, treated WT); and Tg mice (Groups 3 and
4): (3) PBS treated Tg (n = 4) or 50 µg/kg DT (n = 3) treated. Seven days after the intraperitoneal
injection, blood was collected from the eye and centrifuged. Serum was processed for the measurement
of calcium and phosphorus using Architect C8000 automat (Abbott, Lake Forest, IL, USA). Data are
expressed in mmol/L.

4.4. Health Evaluation

To assess the health status after DT treatment, two groups of mice, Tg (n = 4) and WT (n = 5),
were monitored twice each day for 7 days. The monitoring criteria were body surface temperature,
body weight, gait, coat condition, skin tenting for dehydration, hunching, activity, breathing rate and
general body condition. Mice were scored blind for each one of these criteria from 1–5, except for body
weight and temperature.

4.5. Histological Analysis

Tissues were fixed in 4% formaldehyde (from paraformaldehyde Alfa Aesar Inc., Ward Hill, MA,
USA) for 48 h at 4 ◦C prior to routine processing into paraffin and production of slides sectioned
at 4 µm stained with haematoxylin and eosin. Stained slides were analysed by a pathologist. Total
animals examined were: control, WT (n = 4) and Tg (n = 4); 3 days post-DT: WT (n = 3) and Tg (n = 4);
7 days post-DT: WT (n = 3) and Tg (n = 4). In experiments in which mice were injected with calcein
labels, tibiae were processed for histomorphometric analysis. Briefly, tibiae were methyl methacrylate
embedded and block faces prepared to provide tibia cross-sections at mid-shaft. Blocks were studied
using a Leica SP2 confocal microscope, 488-nm laser line for excitation of >510-nm green-yellow
fluorescence of calcein labels, using 10/0.40, 20/0.75 and 40/1.25 objectives. Inter-label distances
(for mineral apposition rate) were measured at 10–20 locations around the circumference at both
endosteal and periosteal surfaces in tibia mid-shaft sections using ImageJ (Rasband, W.S., ImageJ,
U.S. National Institutes of Health, Bethesda, MD, USA) [48]. For routine histological analysis, bones
were decalcified with 14% EDTA and processed normally for standard histology, and empty lacunae
(as a measure of osteocytes ablation) were counted using ImageJ. For HDTR immunohistochemical
staining, tissues were demasked with 0.1% trypsin in PBS at 37 ◦C for 30 min. Sections were then
washed 3 times, each for 5 min with PBS and treated with 0.3% H2O2 for 30 min at room temperature
to block endogenous peroxidase. Tissues were then blocked with 10% rabbit serum for 30 min, and the
primary HDTR antibody was added at a 1:100 dilution overnight at 4 ◦C in a humidified chamber;
incubation with PBS lacking primary antibody was used as a negative control. Sections were then
washed, and horseradish peroxidase (HRP)-conjugated rabbit anti-goat secondary antibody was added
for one hour at room temperature. HRP activity was detected by the DAB (3,3’-diaminobenzidine)
method reacted for 5 min. Tissue sections were then counter-stained with methyl green solution.
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4.6. TUNEL Staining

Apoptosis was evaluated 7 days following single DT injection using the Dead-End TUNEL kit
(Promega, Madison, WI, USA) in six 1 mm regions of cortical bone situated 5 mm below the growth
plate using ImageJ software (National Institute of Health USA). Briefly, paraffin sections were de-waxed,
and re-hydrated then slides were incubated in 0.85% NaCl for 5 min at room temperature and washed
3 times in PBS. Sections were post-fixed in 4% PFA (paraformaldehyde) for 15 min at room then
permeabilised by treatment with 20 µg/mL proteinase K for 15 min at room temperature. The tissue
was equilibrated in equilibration buffer at room temperature for 10 min before being labelled with
terminal deoxynucleotidyl transferase (TdT) reaction mix for 1 h at 37 ◦C. The reaction was stopped by
immersing the slides into 2× SSC buffer for 15 min. The sections were then washed in PBS, blocked in
0.3% H2O2 for 5 min at room temperature, washed in PBS and incubated in streptavidin HRP antibody
for 30 min at room temperature. For positive control tibial sections pre-treated with DNAse I for 10 min
and for the negative control, no TdT was performed. Staining was visualized by incubation in DAB
solution at room temperature for 5–10 min, and analysis were performed on cortical bone situated
5 mm below the growth plate.

4.7. TRAP Staining

Osteoclasts in bone tissue sections were identified using a reaction protocol for tartrate-resistant
acid phosphatase (TRAP), which is present within the osteoclast cytoplasm. Sections were de-waxed,
re-hydrated and incubated in pre-warmed sodium-tartrate buffer at 37 ◦C for 5 min, then incubated
in Solution A for 30 min at 37 ◦C, followed by 15 min in Solution B. Finally, sections were rinsed
in tap water and counterstained with haematoxylin. The numbers of TRAP-positive osteoclasts
were quantified in a 5 mm-long segment of the endosteal surface of cortical bone, 5 mm below the
growth plate.

4.8. Total RNA Isolation and PCR

For isolation from bones, the right and left tibiae were carefully dissected and all their surrounding
muscle removed, leaving the periosteum intact. The cartilaginous ends of the bones were removed
and the remaining shaft spun at 5000 rpm for 2 min (Eppendorf Centrifuge, Centrifuge 5804 R,
Hamburg, Germany) to remove marrow before being snap-frozen in liquid nitrogen. All other tissues
were snap frozen in liquid nitrogen. Frozen tissues were pulverized under liquid nitrogen using
a mortar and pestle and lysed in Qiazol lysis reagent (Qiagen, Crawley, West Sussex, UK). Total
RNA was purified and DNase-treated using the Direct-zol™ RNA MiniPrep Kit (Zymo Research;
Irvine, CA, USA). Prior to cDNA synthesis, the quantity and the integrity of the purified RNA
were assessed. cDNA was synthesized from 150 ng of total RNA using a high capacity cDNA
reverse transcription kit (Applied Biosystems, Foster City, CA, USA). For PCR reaction, the probes
used were: sense ACCCTCCCACTGTATCCACG and antisense ATGAGAAGCCCCACGATGAC for
HDTR; and sense CGGCTGGTGGACTCTCTAAG and antisense CGGGGTCGTCGCTCTGCATC for
Dmp1 [49]; the reaction was run on a 60 ◦C annealing temperature. PCR amplicons were sequenced
and restriction digested.

4.9. Quantitative PCR

For qPCR, qPCRBIO SyGreen 1-Step Lo-ROX (PCR Biosystems, London, UK) was used to perform
qPCR with the absolute quantification method. Standards for each gene of interest were generated,
and the copy number of genes of interest was quantified using the Bio-Rad CFX manager software;
then, the results were normalised to GAPDH, which showed no significant difference when comparing
each selected Tg tissue to its WT counterpart. qPCR reaction primers with amplification efficiency
between 90% and 110% and an R2 standard curve value between 0.99 and 1.00 were considered
acceptable. Primers’ specificity was demonstrated with a single peak of the melting curve with
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a specific temperature. The reaction buffer contained, 5 µL of 2× qPCRBIO SyGreen 1-Step Mix, 0.4 µL
forward primer, 0.4 µL reverser primer, 1.0 µL 20× RTase, 30 ng of RNA and H2O up to 10 µL. Running
conditions were one cycle of 55 ◦C for 10 min, 95 ◦C for 2 min for reverse transcription, 40 cycles of
95 ◦C for 5 s for denaturation and 60 ◦C for 30 s for annealing/extension. HDTR sense primer sequence:
CTTATATACCTATGACCACACAACC, and antisense: CACGATGACCAGCAGACAG were used.

4.10. Western Blotting

Total protein was extracted using RIPA lysis buffer (Thermo Scientific, Loughborough, UK) from
a wide range of liquid nitrogen snap-frozen tissues (heart, spleen, muscle, lung, kidney and liver)
from Tg mice before and 7 days after DT treatment (n = 4 for each), and samples were not pooled.
Protein concentrations for each sample were determined by the Pierce BCA Protein Assay Kit BCA
assay (Fisher, Paisley, UK). Forty micrograms of protein were size-fractionated using SDS-PAGE and
electrotransferred onto polyvinylidene difluoride (PVDF) membranes (Schliecher and Schuell, Dassel,
Germany). Membranes were blocked for 1 h in 0.2% (w/v) I-block (Topix, Bedford, MA, USA) before
being incubated with primary anti-mouse phospho-eEF-2 rabbit mAb (1:1000; Abcam, Cambridge, UK)
and secondary anti rabbit IgG (1:2000; Cell signalling Technologies, Danvers, MA, USA) antibodies.
Proteins were visualized using the enhanced chemiluminescence detection system (ECL) (Fisher,
Paisley, UK). After visualisation, the intensity of total EF-2 and pEF-2 proteins bands form each treated
and vehicle Tg mice was quantified using ImageJ. For the results, representative blots form each
sample were presented, and quantification was presented as the percent of change of pEF-2 against
total EF-2 from all samples.

4.11. Statistical Analysis

Data were checked for a normal distribution using the D’Agostino and Pearson omnibus normality
test. To compare between two groups, Student’s unpaired t-test was used. In comparisons between
more than two groups, one-way analysis of variances (ANOVA) was used with a Tukey post hoc
comparison. All statistical analyses were performed using GraphPad Prism 6 (GraphPad Software,
Inc., San Diego, CA, USA), and the results are expressed as the mean ± the standard error of the mean
(SEM). p < 0.05 was considered to be significant.

5. Conclusions

Overall, these data demonstrate that there are confounding effects in using this model to identify
osteocyte-specific functions. The method of combining selective exposure to DT with tissue restricted
expression of HDTR initially appeared to represent a specific method for acute ablation of osteocytes,
but our data question this selectivity. This system proved more complex than originally reported,
and our attempts to use this model have instead highlighted system-wide effects and significant
deterioration of health status. Indeed, the multitude of changes after DT treatment rendered it
impossible to effectively use this model to study osteocyte function in vivo. In addition to highlighting
the necessity for extensive characterisation of transgenic mouse models, our findings also emphasise
that future studies involving HDTR Tg mice take into account the complex systemic changes that occur
when drawing conclusions from experimental data. For these reasons, we also urge that alternative
models for achieving osteocyte selective ablation are sought.
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