11 research outputs found

    Genetic Alterations in Benign Adrenal Tumors

    No full text
    The genetic basis of most types of adrenal adenomas has been elucidated over the past decade, leading to the association of adrenal gland pathologies with specific molecular defects. Various genetic studies have established links between variants affecting the protein kinase A (PKA) signaling pathway and benign cortisol-producing adrenal lesions. Specifically, genetic alterations in GNAS, PRKAR1A, PRKACA, PRKACB, PDE11A, and PDE8B have been identified. The PKA signaling pathway was initially implicated in the pathogenesis of Cushing syndrome in studies aiming to understand the underlying genetic defects of the rare tumor predisposition syndromes, Carney complex, and McCune-Albright syndrome, both affected by the same pathway. In addition, germline variants in ARMC5 have been identified as a cause of primary bilateral macronodular adrenal hyperplasia. On the other hand, primary aldosteronism can be subclassified into aldosterone-producing adenomas and bilateral idiopathic hyperaldosteronism. Various genes have been reported as causative for benign aldosterone-producing adrenal lesions, including KCNJ5, CACNA1D, CACNA1H, CLCN2, ATP1A1, and ATP2B3. The majority of them encode ion channels or pumps, and genetic alterations lead to ion transport impairment and cell membrane depolarization which further increase aldosterone synthase transcription and aldosterone overproduction though activation of voltage-gated calcium channels and intracellular calcium signaling. In this work, we provide an overview of the genetic causes of benign adrenal tumors

    PRKAR1A and Thyroid Tumors

    No full text
    Thyroid cancer is the most common type of endocrine malignancy and the incidence is rapidly increasing. Follicular (FTC) and papillary thyroid (PTC) carcinomas comprise the well-differentiated subtype and they are the two most common thyroid carcinomas. Multiple molecular genetic and epigenetic alterations have been identified in various types of thyroid tumors over the years. Point mutations in BRAF, RAS as well as RET/PTC and PAX8/PPARγ chromosomal rearrangements are common. Thyroid cancer, including both FTC and PTC, has been observed in patients with Carney Complex (CNC), a syndrome that is inherited in an autosomal dominant manner and predisposes to various tumors. CNC is caused by inactivating mutations in the tumor-suppressor gene encoding the cyclic AMP (cAMP)-dependent protein kinase A (PKA) type 1α regulatory subunit (PRKAR1A) mapped in chromosome 17 (17q22–24). Growth of the thyroid is driven by the TSH/cAMP/PKA signaling pathway and it has been shown in mouse models that PKA activation through genetic ablation of the regulatory subunit Prkar1a can cause FTC. In this review, we provide an overview of the molecular mechanisms contributing to thyroid tumorigenesis associated with inactivation of the RRKAR1A gene

    Exome sequencing findings in children with annular pancreas

    No full text
    Abstract Background Annular pancreas (AP) is a congenital defect of unknown cause in which the pancreas encircles the duodenum. Theories include abnormal migration and rotation of the ventral bud, persistence of ectopic pancreatic tissue, and inappropriate fusion of the ventral and dorsal buds before rotation. The few reported familial cases suggest a genetic contribution. Methods We conducted exome sequencing in 115 affected infants from the California birth defects registry. Results Seven cases had a single heterozygous missense variant in IQGAP1, five of them with CADD scores >20; seven other infants had a single heterozygous missense variant in NRCAM, five of them with CADD scores >20. We also looked at genes previously associated with AP and found two rare heterozygous missense variants, one each in PDX1 and FOXF1. Conclusion IQGAP1 and NRCAM are crucial in cell polarization and migration. Mutations result in decreased motility which could possibly cause the ventral bud to not migrate normally. To our knowledge, this is the first study reporting a possible association for IQGAP1 and NRCAM with AP. Our findings of rare genetic variants involved in cell migration in 15% of our population raise the possibility that AP may be related to abnormal cell migration

    Using a chat-based informed consent tool in large-scale genomic research

    No full text
    OBJECTIVE: We implemented a chatbot consent tool to shift the time burden from study staff in support of a national genomics research study. MATERIALS AND METHODS: We created an Institutional Review Board-approved script for automated chat-based consent. We compared data from prospective participants who used the tool or had traditional consent conversations with study staff. RESULTS: Chat-based consent, completed on a user\u27s schedule, was shorter than the traditional conversation. This did not lead to a significant change in affirmative consents. Within affirmative consents and declines, more prospective participants completed the chat-based process. A quiz to assess chat-based consent user understanding had a high pass rate with no reported negative experiences. CONCLUSION: Our report shows that a structured script can convey important information while realizing the benefits of automation and burden shifting. Analysis suggests that it may be advantageous to use chatbots to scale this rate-limiting step in large research projects

    Nut Consumption and Renal Function Among Women With a History of Gestational Diabetes

    No full text
    OBJECTIVE: Nut intake has been associated with reduced cardiometabolic risk, but few studies have examined its association with renal function. We examined associations between nut intake and renal function among women with previous gestational diabetes mellitus (GDM), a population with an increased risk for renal dysfunction. DESIGN AND METHODS: This study included 607 women with a history of GDM who participated in the Diabetes & Women’s Health Study (2012–2014) follow-up clinical exam in Denmark. At the clinic, biospecimens were collected and habitual intake of nuts (9 types) in the past year was assessed using a food frequency questionnaire. A total of 330 women free of major chronic diseases were included in the analysis. Total nut intake was classified as none (≤1 serving/month), monthly (2–3 servings/month), weekly (1–6 servings/week), and daily (≥1 serving/day). One serving was defined as 28g. Renal function markers included estimated glomerular rate (eGFR) and urinary albumin-to-creatinine ratio (UACR), calculated based on plasma creatinine (mg/dL), and urinary albumin (mg/L), and creatinine (mg/dL) measurements, respectively. We estimated percent differences with 95% confidence intervals (CI) for each outcome by nut intake, adjusted for current body mass index, age, physical activity, energy intake, alcohol consumption, and vegetables intake. RESULTS: We observed a non-linear association between total nut intake and UACR with lowest UACR values among women with weekly intake. Compared to women with weekly intake (n=222), the adjusted UACR values were higher by 86% [95% CI: 15%, 202%], 24% [−1%, 54%], and 117% [22%, 288%] among women with no (n=13), monthly (n=86), and daily (n=9) intake, respectively. Compared to weekly consumers, daily nut consumers also had 9% [0%, 19%] significantly higher eGFR values but eGFR values were similar among women with no and monthly intake. CONCLUSION: Moderate nut consumption may be beneficial to kidney health among women with prior GDM

    Increased diagnostic yield from negative whole genome-slice panels using automated reanalysis

    No full text
    We evaluated the diagnostic yield using genome-slice panel reanalysis in the clinical setting using an automated phenotype/gene ranking system. We analyzed whole genome sequencing (WGS) data produced from clinically ordered panels built as bioinformatic slices for 16 clinically diverse, undiagnosed cases referred to the Pediatric Mendelian Genomics Research Center, an NHGRI-funded GREGoR Consortium site. Genome-wide reanalysis was performed using Moonâ„¢, a machine-learning-based tool for variant prioritization. In five out of 16 cases, we discovered a potentially clinically significant variant. In four of these cases, the variant was found in a gene not included in the original panel due to phenotypic expansion of a disorder or incomplete initial phenotyping of the patient. In the fifth case, the gene containing the variant was included in the original panel, but being a complex structural rearrangement with intronic breakpoints outside the clinically analyzed regions, it was not initially identified. Automated genome-wide reanalysis of clinical WGS data generated during targeted panels testing yielded a 25% increase in diagnostic findings and a possibly clinically relevant finding in one additional case, underscoring the added value of analyses versus those routinely performed in the clinical setting

    De novo variants in the non-coding spliceosomal snRNA gene RNU4-2 are a frequent cause of syndromic neurodevelopmental disorders.

    No full text
    Around 60% of individuals with neurodevelopmental disorders (NDD) remain undiagnosed after comprehensive genetic testing, primarily of protein-coding genes 1 . Increasingly, large genome-sequenced cohorts are improving our ability to discover new diagnoses in the non-coding genome. Here, we identify the non-coding RNA RNU4-2 as a novel syndromic NDD gene. RNU4-2 encodes the U4 small nuclear RNA (snRNA), which is a critical component of the U4/U6.U5 tri-snRNP complex of the major spliceosome 2 . We identify an 18 bp region of RNU4-2 mapping to two structural elements in the U4/U6 snRNA duplex (the T-loop and Stem III) that is severely depleted of variation in the general population, but in which we identify heterozygous variants in 119 individuals with NDD. The vast majority of individuals (77.3%) have the same highly recurrent single base-pair insertion (n.64_65insT). We estimate that variants in this region explain 0.41% of individuals with NDD. We demonstrate that RNU4-2 is highly expressed in the developing human brain, in contrast to its contiguous counterpart RNU4-1 and other U4 homologs, supporting RNU4-2 's role as the primary U4 transcript in the brain. Overall, this work underscores the importance of non-coding genes in rare disorders. It will provide a diagnosis to thousands of individuals with NDD worldwide and pave the way for the development of effective treatments for these individuals. </p
    corecore