7 research outputs found

    Detection of subclonal L1 transductions in colorectal cancer by long-distance inverse-PCR and Nanopore sequencing

    Get PDF
    Long interspersed nuclear elements-1 (L1s) are a large family of retrotransposons. Retrotransposons are repetitive sequences that are capable of autonomous mobility via a copy-and-paste mechanism. In most copy events, only the L1 sequence is inserted, however, they can also mobilize the flanking non-repetitive region by a process known as 3' transduction. L1 insertions can contribute to genome plasticity and cause potentially tumorigenic genomic instability. However, detecting the activity of a particular source L1 and identifying new insertions stemming from it is a challenging task with current methodological approaches. We developed a long-distance inverse PCR (LDI-PCR) based approach to monitor the mobility of active L1 elements based on their 3' transduction activity. LDI-PCR requires no prior knowledge of the insertion target region. By applying LDI-PCR in conjunction with Nanopore sequencing (Oxford Nanopore Technologies) on one L1 reported to be particularly active in human cancer genomes, we detected 14 out of 15 3' transductions previously identified by whole genome sequencing in two different colorectal tumour samples. In addition we discovered 25 novel highly subclonal insertions. Furthermore, the long sequencing reads produced by LDI-PCR/Nanopore sequencing enabled the identification of both the 5' and 3' junctions and revealed detailed insertion sequence information.Peer reviewe

    Retrotransposon insertions can initiate colorectal cancer and are associated with poor survival

    Get PDF
    Genomic instability pathways in colorectal cancer (CRC) have been extensively studied, but the role of retrotransposition in colorectal carcinogenesis remains poorly understood. Although retrotransposons are usually repressed, they become active in several human cancers, in particular those of the gastrointestinal tract. Here we characterize retro-transposon insertions in 202 colorectal tumor whole genomes and investigate their associations with molecular and clinical characteristics. We find highly variable retrotransposon activity among tumors and identify recurrent insertions in 15 known cancer genes. In approximately 1% of the cases we identify insertions in APC, likely to be tumor-initiating events. Insertions are positively associated with the CpG island methylator phenotype and the genomic fraction of allelic imbalance. Clinically, high number of insertions is independently associated with poor disease-specific survival.Peer reviewe

    Comprehensive Evaluation of Protein Coding Mononucleotide Microsatellites in Microsatellite-Unstable Colorectal Cancer

    Get PDF
    Approximately 15% of colorectal cancers exhibit microsatellite instability (MSI), which leads to accumulation of large numbers of small insertions and deletions (indels). Genes that provide growth advantage to cells via loss-of-function mutations in micro-satellites are called MSI target genes. Several criteria to define these genes have been suggested, one of them being simple mutation frequency. Microsatellite mutation rate, however, depends on the length and nucleotide context of the microsatellite. Therefore, assessing the general impact of mismatch repair deficiency on the likelihood of mutation events is paramount when following this approach. To identify MSI target genes, we developed a statistical model for the somatic background indel mutation rate of microsatellites to assess mutation significance. Exome sequencing data of 24 MSI colorectal cancers revealed indels at 54 million mononucleotide microsatellites of three or more nucleotides in length. The top 105 microsatellites from 71 genes were further analyzed in 93 additional MSI colorectal cancers. Mutation significance and estimated clonality of mutations determined the most likely MSI target genes to be the aminoadipate-semialdehyde dehydrogenase AASDH and the solute transporter SLC9A8. Our findings offer a systematic profiling of the somatic background mutation rate in protein-coding mononucleotide microsatellites, allowing a full cataloging of the true targets of MSI in colorectal cancer. (C) 2017 AACR.Peer reviewe

    Genetic architecture of human plasma lipidome and its link to cardiovascular disease

    No full text
    Abstract Understanding genetic architecture of plasma lipidome could provide better insights into lipid metabolism and its link to cardiovascular diseases (CVDs). Here, we perform genome-wide association analyses of 141 lipid species (n = 2,181 individuals), followed by phenome-wide scans with 25 CVD related phenotypes (n = 511,700 individuals). We identify 35 lipid-species-associated loci (P <5 ×10−8), 10 of which associate with CVD risk including five new loci-COL5A1, GLTPD2, SPTLC3, MBOAT7 and GALNT16 (false discovery rate<0.05). We identify loci for lipid species that are shown to predict CVD e.g., SPTLC3 for CER(d18:1/24:1). We show that lipoprotein lipase (LPL) may more efficiently hydrolyze medium length triacylglycerides (TAGs) than others. Polyunsaturated lipids have highest heritability and genetic correlations, suggesting considerable genetic regulation at fatty acids levels. We find low genetic correlations between traditional lipids and lipid species. Our results show that lipidomic profiles capture information beyond traditional lipids and identify genetic variants modifying lipid levels and risk of CVD

    Genetic architecture of human plasma lipidome and its link to cardiovascular disease

    No full text

    Evidence of a causal effect of genetic tendency to gain muscle mass on uterine leiomyomata

    No full text
    Uterine leiomyomata (UL) are the most common tumours of the female genital tract and the primary cause of surgical removal of the uterus. Genetic factors contribute to UL susceptibility. To add understanding to the heritable genetic risk factors, we conduct a genome-wide association study (GWAS) of UL in up to 426,558 European women from FinnGen and a previous UL meta-GWAS. In addition to the 50 known UL loci, we identify 22 loci that have not been associated with UL in prior studies. UL-associated loci harbour genes enriched for development, growth, and cellular senescence. Of particular interest are the smooth muscle cell differentiation and proliferation-regulating genes functioning on the myocardin-cyclin dependent kinase inhibitor 1A pathway. Our results further suggest that genetic predisposition to increased fat-free mass may be causally related to higher UL risk, underscoring the involvement of altered muscle tissue biology in UL pathophysiology. Overall, our findings add to the understanding of the genetic pathways underlying UL, which may aid in developing novel therapeutics.Peer reviewe

    Evidence of a causal effect of genetic tendency to gain muscle mass on uterine leiomyomata

    No full text
    corecore