1,038 research outputs found

    Iatrogenic pneumatosis intestinalis and pneumatosis hepatis

    Get PDF
    A term male fetus with meconium-stained liquor was delivered at a peripheral hospital. He developed abdominal distension and bile-stained vomiting shortly after birth. Meconium ingestion was suspected. Gastric lavage was attempted using inappropriately high volumes and concentrations of sodium bicarbonate in this newborn with undiagnosed jejunal atresia. Subsequent abdominal radiographs documented the presence of the jejunal atresia and pneumatosis intestinalis (PI), together with air in both the porta hepatis and liver parenchyma (Figs 1 - 3). The latter features were interpreted as representing necrotising enterocolitis. The child was transferred to Red Cross Children’s Hospital, Cape Town, for corrective surgery

    Pressure shift of the superconducting T_c of LiFeAs

    Full text link
    The effect of hydrostatic pressure on the superconductivity in LiFeAs is investigated up to 1.8 GPa. The superconducting transition temperature, T_c, decreases linearly with pressure at a rate of 1.5 K/GPa. The negative pressure coefficient of T_c and the high ambient pressure T_c indicate that LiFeAs is the high-pressure analogue of the isoelectronic SrFe_2As_2 and BaFe_2As_2.Comment: 3 pages, 2 figure

    Greenland Ice Sheet surface melt amplified by snowline migration and bare ice exposure

    Get PDF
    Greenland Ice Sheet mass loss has recently increased because of enhanced surface melt and runoff. Since melt is critically modulated by surface albedo, understanding the processes and feedbacks that alter albedo is a prerequisite for accurately forecasting mass loss. Using satellite imagery, we demonstrate the importance of Greenland’s seasonally fluctuating snowline, which reduces ice sheet albedo and enhances melt by exposing dark bare ice. From 2001 to 2017, this process drove 53% of net shortwave radiation variability in the ablation zone and amplified ice sheet melt five times more than hydrological and biological processes that darken bare ice itself. In a warmer climate, snowline fluctuations will exert an even greater control on melt due to flatter ice sheet topography at higher elevations. Current climate models, however, inaccurately predict snowline elevations during high melt years, portending an unforeseen uncertainty in forecasts of Greenland’s runoff contribution to global sea level ris

    The Relation of Edge Confinement to Global Confinement in ASDEX Upgrade

    No full text

    Pair-Hopping Mechanism for Layered Superconductors

    Full text link
    We propose a possible charge fluctuation effect expected in layered superconducting materials. In the multireference density functional theory, relevant fluctuation channels for the Josephson coupling between superconducting layers include the interlayer pair hopping derived from the Coulomb repulsion. When interlayer single-electron tunneling processes are irrelevant in the Kohn-Sham electronic band structure calculation, the two-body effective interactions stabilize a superconducting phase. This state is also regarded as a valence-bond solid in a bulk electronic state. The hidden order parameters coexist with the superconducting order parameter when the charging effect of a layer is comparable to the pair hopping. Relevant materials structures favorable for the pair-hopping mechanism are discussed.Comment: 24 pages, 2 figures, to be published in J. Phys. Soc. Jpn. (2009

    Distorted magnetic orders and electronic structures of tetragonal FeSe from first-principles

    Full text link
    We use the state-of-the-arts density-functional-theory method to study various magnetic orders and their effects on the electronic structures of the FeSe. Our calculated results show that, for the spins of the single Fe layer, the striped antiferromagnetic orders with distortion are more favorable in total energy than the checkerboard antiferromagnetic orders with tetragonal symmetry, which is consistent with known experimental data, and the inter-layer magnetic interaction is very weak. We investigate the electronic structures and magnetic property of the distorted phases. We also present our calculated spin coupling constants and discuss the reduction of the Fe magnetic moment by quantum many-body effects. These results are useful to understand the structural, magnetic, and electronic properties of FeSe, and may have some helpful implications to other FeAs-based materials

    Superconductivity induced by Ni doping in BaFe2_2As2_2

    Full text link
    A series of 122 phase BaFe2x_{2-x}Nix_xAs2_2 (xx = 0, 0.055, 0.096, 0.18, 0.23) single crystals were grown by self flux method and a dome-like Ni doping dependence of superconducting transition temperature is discovered. The transition temperature TconT_c^{on} reaches a maximum of 20.5 K at xx = 0.096, and it drops to below 4 K as xx \geq 0.23. The negative thermopower in the normal state indicates that electron-like charge carrier indeed dominates in this system. This Ni-doped system provides another example of superconductivity induced by electron doping in the 122 phase.Comment: 7 pages, 5 figures, revised version, added EDX result, accepted for special issue of NJ

    To What Extent Iron-Pnictide New Superconductors Have Been Clarified: A Progress Report

    Full text link
    In this review, the authors present a summary of experimental reports on newly discovered iron-based superconductors as they were known at the end of 2008. At the same time, this paper is intended to be useful for experimenters to know the current status of these superconductors. The authors introduce experimental results that reveal basic physical properties in the normal and superconducting states. The similarities and differences between iron-pnictide superconductors and other unconventional superconductors are also discussed.Comment: 20 pages, 32 figures. Open selec
    corecore