63 research outputs found

    High Natality Rates of Endangered Steller Sea Lions in Kenai Fjords, Alaska and Perceptions of Population Status in the Gulf of Alaska

    Get PDF
    Steller sea lions experienced a dramatic population collapse of more than 80% in the late 1970s through the 1990s across their western range in Alaska. One of several competing hypotheses about the cause holds that reduced female reproductive rates (natality) substantively contributed to the decline and continue to limit recovery in the Gulf of Alaska despite the fact that there have been very few attempts to directly measure natality in this species. We conducted a longitudinal study of natality among individual Steller sea lions (n = 151) at a rookery and nearby haulouts in Kenai Fjords, Gulf of Alaska during 2003–2009. Multi-state models were built and tested in Program MARK to estimate survival, resighting, and state transition probabilities dependent on whether or not a female gave birth in the previous year. The models that most closely fit the data suggested that females which gave birth had a higher probability of surviving and giving birth in the following year compared to females that did not give birth, indicating some females are more fit than others. Natality, estimated at 69%, was similar to natality for Steller sea lions in the Gulf of Alaska prior to their decline (67%) and much greater than the published estimate for the 2000s (43%) which was hypothesized from an inferential population dynamic model. Reasons for the disparity are discussed, and could be resolved by additional longitudinal estimates of natality at this and other rookeries over changing ocean climate regimes. Such estimates would provide an appropriate assessment of a key parameter of population dynamics in this endangered species which has heretofore been lacking. Without support for depressed natality as the explanation for a lack of recovery of Steller sea lions in the Gulf of Alaska, alternative hypotheses must be more seriously considered

    DNA Ligase C and Prim-PolC participate in base excision repair in mycobacteria

    Get PDF
    Prokaryotic Ligase D is a conserved DNA repair apparatus processing DNA double-strand breaks in stationary phase. An orthologous Ligase C (LigC) complex also co-exists in many bacterial species but its function is unknown. Here, we show that the LigC complex interacts with core BER enzymes in vivo and demonstrate that together these factors constitute an excision repair apparatus capable of repairing damaged bases and abasic sites. The polymerase component, which contains a conserved C-terminal structural loop, preferentially binds to and fills-in short gapped DNA intermediates with RNA and LigC ligates the resulting nicks to complete repair. Components of the LigC complex, like LigD, are expressed upon entry into stationary phase and cells lacking either of these pathways exhibit increased sensitivity to oxidising genotoxins. Together, these findings establish that the LigC complex is directly involved in an excision repair pathway(s) that repairs DNA damage with ribonucleotides during stationary phase

    Predation on an Upper Trophic Marine Predator, the Steller Sea Lion: Evaluating High Juvenile Mortality in a Density Dependent Conceptual Framework

    Get PDF
    The endangered western stock of the Steller sea lion (Eumetopias jubatus) – the largest of the eared seals – has declined by 80% from population levels encountered four decades ago. Current overall trends from the Gulf of Alaska to the Aleutian Islands appear neutral with strong regional heterogeneities. A published inferential model has been used to hypothesize a continuous decline in natality and depressed juvenile survival during the height of the decline in the mid-late 1980's, followed by the recent recovery of juvenile survival to pre-decline rates. However, these hypotheses have not been tested by direct means, and causes underlying past and present population trajectories remain unresolved and controversial. We determined post-weaning juvenile survival and causes of mortality using data received post-mortem via satellite from telemetry transmitters implanted into 36 juvenile Steller sea lions from 2005 through 2011. Data show high post-weaning mortality by predation in the eastern Gulf of Alaska region. To evaluate the impact of such high levels of predation, we developed a conceptual framework to integrate density dependent with density independent effects on vital rates and population trajectories. Our data and model do not support the hypothesized recent recovery of juvenile survival rates and reduced natality. Instead, our data demonstrate continued low juvenile survival in the Prince William Sound and Kenai Fjords region of the Gulf of Alaska. Our results on contemporary predation rates combined with the density dependent conceptual framework suggest predation on juvenile sea lions as the largest impediment to recovery of the species in the eastern Gulf of Alaska region. The framework also highlights the necessity for demographic models based on age-structured census data to incorporate the differential impact of predation on multiple vital rates

    The FERM and PDZ Domain-Containing Protein Tyrosine Phosphatases, PTPN4 and PTPN3, Are Both Dispensable for T Cell Receptor Signal Transduction

    Get PDF
    PTPN3 and PTPN4 are two closely-related non-receptor protein tyrosine phosphatases (PTP) that, in addition to a PTP domain, contain FERM (Band 4.1, Ezrin, Radixin, and Moesin) and PDZ (PSD-95, Dlg, ZO-1) domains. Both PTP have been implicated as negative-regulators of early signal transduction through the T cell antigen receptor (TCR), acting to dephosphorylate the TCRζ chain, a component of the TCR complex. Previously, we reported upon the production and characterization of PTPN3-deficient mice which show normal TCR signal transduction and T cell function. To address if the lack of a T cell phenotype in PTPN3-deficient mice can be explained by functional redundancy of PTPN3 with PTPN4, we generated PTPN4-deficient and PTPN4/PTPN3 double-deficient mice. As in PTPN3 mutants, T cell development and homeostasis and TCR-induced cytokine synthesis and proliferation were found to be normal in PTPN4-deficient and PTPN4/PTPN3 double-deficient mice. PTPN13 is another FERM and PDZ domain-containing non-receptor PTP that is distantly-related to PTPN3 and PTPN4 and which has been shown to function as a negative-regulator of T helper-1 (Th1) and Th2 differentiation. Therefore, to determine if PTPN13 might compensate for the loss of PTPN3 and PTPN4 in T cells, we generated mice that lack functional forms of all three PTP. T cells from triple-mutant mice developed normally and showed normal cytokine secretion and proliferative responses to TCR stimulation. Furthermore, T cell differentiation along the Th1, Th2 and Th17 lineages was largely unaffected in triple-mutants. We conclude that PTPN3 and PTPN4 are dispensable for TCR signal transduction

    The role of the amygdala in face perception and evaluation

    Get PDF
    Faces are one of the most significant social stimuli and the processes underlying face perception are at the intersection of cognition, affect, and motivation. Vision scientists have had a tremendous success of mapping the regions for perceptual analysis of faces in posterior cortex. Based on evidence from (a) single unit recording studies in monkeys and humans; (b) human functional localizer studies; and (c) meta-analyses of neuroimaging studies, I argue that faces automatically evoke responses not only in these regions but also in the amygdala. I also argue that (a) a key property of faces represented in the amygdala is their typicality; and (b) one of the functions of the amygdala is to bias attention to atypical faces, which are associated with higher uncertainty. This framework is consistent with a number of other amygdala findings not involving faces, suggesting a general account for the role of the amygdala in perception

    Global Diversity of Sponges (Porifera)

    Get PDF
    With the completion of a single unified classification, the Systema Porifera (SP) and subsequent development of an online species database, the World Porifera Database (WPD), we are now equipped to provide a first comprehensive picture of the global biodiversity of the Porifera. An introductory overview of the four classes of the Porifera is followed by a description of the structure of our main source of data for this paper, the WPD. From this we extracted numbers of all ‘known’ sponges to date: the number of valid Recent sponges is established at 8,553, with the vast majority, 83%, belonging to the class Demospongiae. We also mapped for the first time the species richness of a comprehensive set of marine ecoregions of the world, data also extracted from the WPD. Perhaps not surprisingly, these distributions appear to show a strong bias towards collection and taxonomy efforts. Only when species richness is accumulated into large marine realms does a pattern emerge that is also recognized in many other marine animal groups: high numbers in tropical regions, lesser numbers in the colder parts of the world oceans. Preliminary similarity analysis of a matrix of species and marine ecoregions extracted from the WPD failed to yield a consistent hierarchical pattern of ecoregions into marine provinces. Global sponge diversity information is mostly generated in regional projects and resources: results obtained demonstrate that regional approaches to analytical biogeography are at present more likely to achieve insights into the biogeographic history of sponges than a global perspective, which appears currently too ambitious. We also review information on invasive sponges that might well have some influence on distribution patterns of the future

    Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy

    Get PDF
    corecore