12 research outputs found

    Nitrogen Deposition Reduces Plant Diversity and Alters Ecosystem Functioning: Field-Scale Evidence from a Nationwide Survey of UK Heathlands

    Get PDF
    Findings from nitrogen (N) manipulation studies have provided strong evidence of the detrimental impacts of elevated N deposition on the structure and functioning of heathland ecosystems. Few studies, however, have sought to establish whether experimentally observed responses are also apparent under natural, field conditions. This paper presents the findings of a nationwide field-scale evaluation of British heathlands, across broad geographical, climatic and pollution gradients. Fifty two heathlands were selected across an N deposition gradient of 5.9 to 32.4 kg ha−1 yr−1. The diversity and abundance of higher and lower plants and a suite of biogeochemical measures were evaluated in relation to climate and N deposition indices. Plant species richness declined with increasing temperature and N deposition, and the abundance of nitrophilous species increased with increasing N. Relationships were broadly similar between upland and lowland sites, with the biggest reductions in species number associated with increasing N inputs at the low end of the deposition range. Both oxidised and reduced forms of N were associated with species declines, although reduced N appears to be a stronger driver of species loss at the functional group level. Plant and soil biochemical indices were related to temperature, rainfall and N deposition. Litter C:N ratios and enzyme (phenol-oxidase and phosphomonoesterase) activities had the strongest relationships with site N inputs and appear to represent reliable field indicators of N deposition. This study provides strong, field-scale evidence of links between N deposition - in both oxidised and reduced forms - and widespread changes in the composition, diversity and functioning of British heathlands. The similarity of relationships between upland and lowland environments, across broad spatial and climatic gradients, highlights the ubiquity of relationships with N, and suggests that N deposition is contributing to biodiversity loss and changes in ecosystem functioning across European heathlands

    Non-Human Predator Interactions with Wild Great Apes in Africa and the Use of Camera Traps to Study Their Dynamics

    No full text
    The slow life histories of great apes (hereafter ‘apes') combined with a growing inventory of predation incidents suggest that apes may be strongly affected by direct predation, as well as by predation risk. Predation risk may shape and increase behavioural flexibility by forcing individuals to adapt their behaviour to predator patterns. Forest leopards are an apex predator of primates in African rain forests and may represent a significant risk to ape populations. More field data are needed to further elucidate the behavioural modifications of apes in response to predation. We present research methods that combine the use of remote camera traps, capture-mark-recapture statistics and occupancy modelling to study predator-African ape relationships and potential antipredator behaviour through spatial variation in species co-occurrence patterns

    Advances in understanding, models and parameterizations of biosphere-atmosphere ammonia exchange

    No full text
    Atmospheric ammonia (NH3) dominates global emissions of total reactive nitrogen (Nr), while emissions from agricultural production systems contribute about two-thirds of global NH3 emissions; the remaining third emanates from oceans, natural vegetation, humans, wild animals and biomass burning. On land, NH3 emitted from the various sources eventually returns to the biosphere by dry deposition to sink areas, predominantly semi-natural vegetation, and by wet and dry deposition as ammonium (NH4+) to all surfaces. However, the land/atmosphere exchange of gaseous NH3 is in fact bi-directional over unfertilized as well as fertilized ecosystems, with periods and areas of emission and deposition alternating in time (diurnal, seasonal) and space (patchwork landscapes). The exchange is controlled by a range of environmental factors, including meteorology, surface layer turbulence, thermodynamics, air and surface heterogeneous-phase chemistry, canopy geometry, plant development stage, leaf age, organic matter decomposition, soil microbial turnover, and, in agricultural systems, by fertilizer application rate, fertilizer type, soil type, crop type, and agricultural management practices. We review the range of processes controlling NH3 emission and uptake in the different parts of the soil-canopy-atmosphere continuum, with NH3 emission potentials defined at the substrate and leaf levels by different [NH4+] /[H+] ratios (Γ). Surface/atmosphere exchange models for NH3 are necessary to compute the temporal and spatial patterns of emissions and deposition at the soil, plant, field, landscape, regional and global scales, in order to assess the multiple environmental impacts of airborne and deposited NH3 and NH4+ . Models of soil/vegetation/atmosphere NH3 exchange are reviewed from the substrate and leaf scales to the global scale. They range from simple steady-state, “big leaf” canopy resistance models, to dynamic, multi-layer, multi-process, multi-chemical species schemes. Their level of complexity depends on their purpose, the spatial scale at which they are applied, the current level of parameterization, and the availability of the input data they require. State-of-the-art solutions for determining the emission/sink Γ potentials through the soil/canopy system include coupled, interactive chemical transport models (CTM) and soil/ecosystem modelling at the regional scale. However, it remains a matter for debate to what extent realistic options for future regional and global models should be based on process-based mechanistic versus empirical and regression-type models. Further discussion is needed on the extent and timescale by which new approaches can be used, such as integration with ecosystem models and satellite observations

    Glucocerebrosidase and its relevance to Parkinson disease

    No full text
    corecore