813 research outputs found

    Acceleration of supersonic/hypersonic reactive CFD simulations via heterogeneous CPU-GPU supercomputing

    Get PDF
    The numerical study of reactive flows subjected to supersonic conditions is accelerated by the co-design of a novel strategy to integrate finite-rate chemistry by an adaptive multi-block ODE algebra solver for Graphical Processing Units (GPU), that is coupled to a parallel, shock-capturing Finite-Volume reactive flow solver running on CPUs. The resulting GPGPU solver is validated on Large Eddy Simulations (LES) of a scramjet configuration, whose experimental measurements are available from the literature. It is demonstrated that the proposed method significantly accelerates the solution of reactive CFD computations with Direct Integration of the finite-rate chemistry

    Ultrasound shear wave elastography for liver disease. A critical appraisal of the many actors on the stage

    Get PDF
    In the last 12\u200a-\u200a18 months nearly all ultrasound manufacturers have arrived to implement ultrasound shear wave elastography modality in their equipment for the assessment of chronic liver disease; the few remaining players are expected to follow in 2016.When all manufacturers rush to a new technology at the same time, it is evident that the clinical demand for this information is of utmost value. Around 1990, there was similar demand for color Doppler ultrasound; high demand for contrast-enhanced ultrasonography was evident at the beginning of this century, and around 2010 demand increased for strain elastography. However, some issues regarding the new shear wave ultrasound technologies must be noted to avoid misuse of the resulting information for clinical decisions. As new articles are expected to appear in 2016 reporting the findings of the new technologies from various companies, we felt that the beginning of this year was the right time to present an appraisal of these issues. We likewise expect that in the meantime EFSUMB will release a new update of the existing guidelines 1 2.The first ultrasound elastography method became available 13 years ago in the form of transient elastography with Fibroscan(\uae) 3. It was the first technique providing non-invasive quantitive information about the stiffness of the liver and hence regarding the amount of fibrosis in chronic liver disease 3. The innovation was enormous, since a non-invasive modality was finally available to provide findings otherwise achievable only by liver biopsy. In fact, prior to ultrasound elastography, a combination of conventional and Doppler ultrasound parameters were utilized to inform the physician about the presence of cirrhosis and portal hypertension 4. However, skilled operators were required, reproducibility and diagnostic accuracy were suboptimal, and it was not possible to differentiate the pre-cirrhotic stages of fibrosis. All these limitations were substantially improved by transient elastography, performed with Fibroscan(\uae), a technology dedicated exclusively to liver elastography. Since then, more than 1300 articles dealing with transient elastography have been listed in PubMed, some describing results with more than 10,000 patients 5. The technique has been tested in nearly all liver disease etiologies, with histology as the reference standard. Meta-analysis of data, available in many etiologies 6, showed good performance and reproducibility as well as some situations limiting reliability 5. Thresholds for the different fibrosis stages (F0 to F4) have been provided by many large-scale studies utilizing histology as the reference standard 7. Transient elastography tracks the velocity of shear waves generated by the gentle hit of a piston on the skin, with the resulting compression wave traveling in the liver along its longitudinal axis. The measurement is made in a 4\u200acm long section of the liver, thus able to average slightly inhomogeneous fibrotic deposition.In 2008 a new modality became available, Acoustic Radiation Force Impulse (ARFI) quantification, and classified by EFSUMB 1 as point shear wave elastography (pSWE), since the speed of the shear wave (perpendicular to the longitudinal axis) is measured in a small region (a "point", few millimeters) at a freely-choosen depth within 8\u200acm from the skin. This technology was the first to be implemented in a conventional ultrasound scanner by Siemens(\uae) 8. Several articles have been published regarding this technology, most with the best reference standards 9, some including findings on more than 1000 hepatitis C patients 10 or reporting meta-analysis of data 11. Although the correlation between Siemens pSWE and transient elastography appeared high 12 13, the calculated thresholds for the different fibrosis stages and the stiffness ranges between the two techniques are not superimposable.Interestingly, pSWE appears to provide greater applicability than transient elastography for measuring both liver 13 and spleen stiffness, which is a new application of elastography 14, of interest for the prediction of the degree of portal hypertension 15 16.Nowadays other companies have started producing equipment with pSWE technology, but only very few articles have been published so far, for instance describing the use of Philips(\uae) equipment, which was the second to provide pSWE. These articles show preliminary good results also in comparison with TE 17 18. Not enough evidence is currently available in the literature about the elastographic performance of the products most recently introduced to the market. Furthermore, with some products the shear wave velocities generated by a single ultrasound acoustic push pulse can be measured in a bidimensional area (a box in the range of 2\u200a-\u200a3\u200acm per side) rather than in a single small point, producing a so-called bidimensional 2D-SWE 1. The stiffness is depicted in color within the area and refreshing of the measurement occurs every 1\u200a-\u200a2 seconds. Once the best image is acquired, the operator chooses a Region Of Interest (ROI) within the color box, where the mean stiffness is then calculated. 2D-SWE can be performed as a "one shot" technique or as a semi-"real-time" technique for a few seconds (at about 1 frame per second) in order to obtain a stable elastogram. With either technique, there should be no motion/breathing during image acquisition. A bidimensional averaged area should overcome the limitation of pSWE to inadvertently investigate small regions of greater or lesser stiffness than average. A shear wave quality indicator could be useful to provide real-time feedback and optimize placement of the sampling ROIs, a technology recently presented by Toshiba(\uae), but which is still awaiting validation in the literature.Supersonic Imagine by Aixplorer(\uae) which works with a different modality of insonation and video analysis compared to the the previously-mentioned three techniques (i.\u200ae., transient elastography, pSWE and 2D-SWE), leading to a bidimensional assessment of liver stiffness in real time up to 5\u200aHz and in larger regions; thus this technique is also termed real-time 2\u200aD SWE. It has been available on the market for a few years 19 20, and many articles have been published showing stiffness values quite similar to those of Fibroscan(\uae) 21; likewise, defined thresholds based on histological findings have appeared in several articles 19 20 21.After this brief summary of the technological state of the art we would like to mention the following critical issues that we believe every user should note prior to providing liver stiffness reports. \ub7 The thresholds obtained from the "oldest" techniques for the various fibrosis stages based on hundreds of patients with histology as reference standard cannot be straightforwardly applied to the new ultrasound elastography techniques, even if based on the same principle (e.\u200ag. pSWE). In fact, the different manufacturers apply proprietary patented calculation modes, which might result in slightly to moderately different values. It should be kept in mind that the range for intermediate fibrosis stages (F1 to F3) is quite narrow, in the order of 2\u200a-\u200a3 kilopascal (over a total range spanning 2 to 75 kPa with Fibroscan), so that slightly different differences in outputs could shift the assessment of patients from one stage to another. Comparative studies using phantoms and healthy volunteers, as well as patients, are eagerly awaited. In fact, the equipment might not produce linear correlations of measurements at different degrees of severity of fibrosis. As a theoretical example, some equipment might well correlate in their values with an older technique, such as transient elastography, at low levels of liver fibrosis, but not as well in cases of more advanced fibrosis or vice versa. Consequentely, when elastography data are included in a report, the equipment utilized for the measurement should be clearly specified, and conclusions about the fibrosis stage should be withheld if an insufficient number of comparative studies with solid reference standards are available for that specific equipment.. \ub7 Future studies using histology as a reference might be biased in comparison to previous studies, since nowadays fewer patients with chronic hepatitis C or hepatitis B undergo biopsy. In fact, due to wide availability of effective drugs as well as the use of established elastography methods for patients with viral hepatitis, most cases submitted to biopsy today have uncertain etiology or inconsistent and inconclusive clinical data. Therefore, extrapolated thresholds from such inhomogeneous populations applied to more ordinary patients with viral hepatitis might become problematic in the future, although no better solution is currently anticipated. This situation might lead to the adoption of a standard validated elastographic method as reference, but this has to be agreed-upon at an international level.. \ub7 Ultrasound elastography embedded in conventional scanners usually allows the choice of where to place the ROI within the color stiffness box and whether to confirm or exclude each single measurement when determining the final value. Thus, the operator has a greater potential to influence the final findings than with Fibroscan\uae, where these choices are not available. This has to be kept in mind to avoid the possibility that an operator could, even inadvertently, tend to confirm an assumption about that specific patient or to confirm the patient's expectations.. \ub7 Quality criteria for the new technologies following transient elastography are absent (depending on the manufacturer) or have not been satisfactorily defined, so that the information potentially inserted in a report cannot currently be judged for its reliability by the clinician.. (ABSTRACT TRUNCATED

    Multivariable optimization of pyramidal compound substrates for cooling of power-electronics in modern hybrid and electric propulsion systems

    Get PDF
    We present a method for the optimization of the thermal cooling of heat sources mounted on top of layered composites and pyramidal substrates, that are widely used in the power electronics of hybrid-electric propulsion systems. The analytical solution of the Laplace's heat equation is approximated via Fourier expansion series and it is coupled to the Influence Coefficient Method (ICM) to provide a functional of the overall thermal stress to minimize. A multivariable optimization method is derived by coupling the equations for the heat transfer with the Sequential Least-Square Quadratic Programming (SLSQP), or the Bounded Limited-Memory BFGS (L-BFGS-B) algorithm. Code validation is performed against three-dimensional simulations and experimental data available from the literature. It is shown that an optimal component relocation and apportionment of the overall thickness of the multilayer substrate promotes a sensible reduction of the thermal stress

    A multi region adjoint-based solver for topology optimization in conjugate heat transfer problems

    Get PDF
    This work presents an exploration of fluid region optimization within coupled fluid–thermal problems of industrial significance, namely the design of a cooling plate for the thermal management of Printed Circuit Boards (PCB) of electrical propulsion systems. The Topology Optimization technique has been employed through a in-house developed multi-region adjoint solver and a set of customized boundary conditions, allowing the sensitivity computation independently on the problem size. The technique involves the integration of solid material into the computational domain to induce modifications in flow dynamics. This alteration aims to minimize a multi-objective function that considers both the skin temperature and the mechanical power dissipation caused by fluid movement across the domain. The obtained sensitivity values were then employed in optimizing material distribution through the Method of Moving Asymptotes. The derived material distribution was further post-processed to extract the newly optimized configuration of the system. This enabled a thorough evaluation of the optimization methodology's performance and its effectiveness in enhancing the system's overall efficiency

    An Adjoint‐Based Solver with Adaptive Mesh Refinement For Efficient Design of Coupled Thermal‐Fluid Systems

    Get PDF
    A multi-objective continuous adjoint strategy based on the superposition of boundary functions for topology optimization of problems where the heat transfer must be enhanced and the dissipated mechanical power controlled at the same time, has been here implemented in a Finite Volume (FV), incompressible, steady flow solver supporting a dynamic Adaptive Mesh Refinement (AMR) strategy. The solver models the transition from fluid to solid by a porosity field, that appears in the form of penalization in the momentum equation; the material distribution is optimized by the Method of Moving Asymptotes (MMA). AMR is based on a hierarchical non-conforming h-refinement strategy and is applied together with a flux correction to enforce conservation across topology changes. It is shown that a proper choice of the refinement criterium favors a mesh-independent solution. Finally, a Pareto front built from the components of the objective function is used to find the best combination of the weights in the optimization cycle. Numerical experiments on two- and three-dimensional test cases, including the aero-thermal optimization of a simplified layout of a cooling system, have been used to validate the implemented methodology

    MicroRNAs as Modulators of Tumor Metabolism, Microenvironment, and Immune Response in Hepatocellular Carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality. Molecular heterogeneity and absence of biomarkers helping patient allocation to the best therapeutic option contribute to poor prognosis in advanced stages. MicroRNAs' (miRNAs) deregulated expression contributes to tumor development and progression and influences drug resistance in HCC. Accordingly, miRNAs have been extensively investigated as both biomarkers and therapeutic targets. The diagnostic and prognostic roles of circulating miRNAs have been ascertained, though with some inconsistencies across studies. From a therapeutic perspective, miRNA-based approaches demonstrated safety profiles and antitumor efficacy in HCC animal models. Nevertheless, caution should be used when transferring preclinical findings to the clinic, due to possible molecular inconsistency between animal models and the heterogeneous patterns of human diseases. Awealth of information is offered by preclinical studies exploring the mechanisms driving miRNAs' aberrant expression, the molecular cascades triggered by miRNAs and the corresponding phenotypic changes. Ex-vivo analyses confirmed these results, further shedding light on the intricacy of the human disease often overcoming pre-clinical models. This complexity seems to be ascribed to the intrinsic heterogeneity of HCC, to different risk factors driving its development, as well as to changes across stages and previous treatments. Preliminary findings suggest that miRNAs associated with specific risk factors might be more informative in defined patients' subgroups. The first issue to be considered when trying to envisage a possible translational perspective is the molecular context that often drives different miRNA functions, as clearly evidenced by "dual" miRNAs. Concerning the possible roles of miRNAs as biomarkers and therapeutic targets, we will focus on miRNAs' involvement in metabolic pathways and in the modulation of tumor microenvironment, to support their exploitation in defined contexts

    Toward the Simulation of Flashing Cryogenic Liquids by a Fully Compressible Volume of Fluid Solver

    Get PDF
    We present a fully compressible single-fluid volume of fluid (VOF) solver with phase change for high-speed flows, where the atomization of the liquid can occur either by the aerodynamics or by the effect of the local pressure. The VOF approximation among a non-miscible phase (non-condensable gas) and a mixture of two fluids (liquid and vapor) represents the liquid core of the jet and its atomization. A barotropic model is used in combination with the equation of state (EoS) to link the mixture density to pressure and temperature. The solver is written with the aim to simulate high-pressure injection in gas–liquid systems, where the pressure of the liquid is great enough to cause significant compression of the surrounding gas. Being designed in an C++ object-oriented fashion, the solver is able to support any kind of EoS; the aim is to apply it to the simulation of the injection of liquid propellant in rocket engines. The present work includes the base development; a verification assessment of the code is provided by the solution of a set of numerical experiments to prove the boundedness, convergence and accuracy of the method. Experimental measurements of a cavitating microscopic in-nozzle flow, available in the literature, are finally used for a first validation with phase change

    Liver function changes after transarterial chemoembolization in US hepatocellular carcinoma patients: The LiverT study

    Get PDF
    Background: The real-world incidence of chronic liver damage after transarterial chemoembolization (TACE) is unclear. LiverT, a retrospective, observational study, assessed liver function deterioration after a single TACE in real-world hepatocellular carcinoma (HCC) patients in US practice. Methods: Eligible HCC patients identified from Optum's integrated database using standard codes as having had an index TACE between 2010 and 2016 with no additional oncologic therapy in the subsequent 3 months. At least one laboratory value (bilirubin, albumin, aspartate transaminase [AST], alanine transaminase [ALT], international normalized ratio [INR]) was required at baseline and the acute ( 6429 days after TACE) and chronic (30-90 days after TACE) periods. Due to lack of universally accepted liver function deterioration criteria, clinically meaningful changes in laboratory parameters were pre-defined by authors (FP, RM, and SO). Results: Of the 3963 TACE patients, 572 were eligible for analyses. Deterioration of liver function from baseline occurred in the acute period and persisted in the chronic period (bilirubin 30 and 23%, albumin 52 and 31%, AST 44 and 25%, ALT 43 and 25%, INR 25 and 15%, respectively). In a subgroup analysis, a higher proportion of patients with diabetes had deterioration in AST and ALT. Conclusions: A clinically meaningful proportion of real-world HCC patients had deterioration of liver function-related laboratory values 30-90 days after a single TACE in modern US practice. Future electronic health record research may help determine causality. The present findings highlight the need for the careful selection of patients for TACE, which is important to help optimize the benefit of the overall HCC treatment course
    corecore