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A B S T R A C T

The numerical study of reactive flows subjected to supersonic conditions is accelerated by the co-design of a
novel strategy to integrate finite-rate chemistry by an adaptive multi-block ODE algebra solver for Graphical
Processing Units (GPU), that is coupled to a parallel, shock-capturing Finite-Volume reactive flow solver
running on CPUs. The resulting GPGPU solver is validated on Large Eddy Simulations (LES) of a scramjet
configuration, whose experimental measurements are available from the literature. It is demonstrated that the
proposed method significantly accelerates the solution of reactive CFD computations with Direct Integration
of the finite-rate chemistry.
1. Introduction

Supersonic combustion ramjet (scramjet) engines embody the core
technology required to develop the future generation of supersonic/
hypersonic transportation and high-altitude cruisers [1]. Furthermore,
these air-breathing propulsion systems have been recognized as the
most promising design to enhance the mission potential of the next-
generation military tactical missiles as they lack moving parts or oxy-
gen tanks [2]. The flow structure in the scramjet engine is very complex
and dominated by multiple shocks reflecting on the chamber walls
as they travel downstream in the combustor. Large velocity and tem-
perature gradients caused by the shocks trigger combustion. Among
the several technical challenges that limit the employment of scramjet
engines in commercial applications, it is worth mentioning: the influ-
ence of the engine geometry and that of the flow regime on the shock
pattern; the losses of total temperature and pressure that influence the
combustion efficiency [3]; the study of the mass capture ratio at differ-
ent operating conditions [4,5]; the presence of flow-choking at the inlet
section [6]; the interaction between the shock wave systems and the
boundary layer [7,8]; the effects produced by a variation of the cowl
deflection angle [9] and other geometrical quantities [10]. Ignition and
flame holding in scramjet engines are critical aspects to be addressed
[3,11]. Fuel injection in scramjet engines [12] usually occurs by means
of: (a) wall injectors, that inject the fuel from a side wall; (b) strut
injectors, that are located in proximity of the channel mid-axis, hence
injecting the fuel directly in the core of the surrounding air stream.
Adequate air-fuel mixing must be achieved to facilitate combustion
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in each case [13,14]. Studies of actual operational flight scenarios of
scramjet engines are very limited because the harsh operating condi-
tions make experiments very difficult to perform. Additionally, the lack
of appropriate experimental techniques or instrumentation to measure
reacting flow quantities in sophisticated ground facilities contributes
to affect negatively the experimental characterization of the configura-
tions [15]. In this scenario, Computational Fluid Dynamics (CFD) can
help to study hypersonic vehicles at different flow conditions and with
strong flame unsteadiness [16,17]. When modeling flame dynamics, an
accurate prediction of the chemical evolution, including the interaction
with the different turbulence scales, must be accounted; the numerical
solver must therefore be able to account for: (a) the turbulent flow
dynamics under supersonic conditions; (b) the transport of 𝑁𝑠 chemical
(reacting) species, that are transported in the computational domain
by 𝑁𝑠 − 1 convection–diffusion equations; reactions of the species are
accounted by a system of chemical Ordinary Differential Equations
(ODEs), whose size is influenced by the grid resolution, the number
of chemical species involved, and the number of elementary reactions
of the mechanism [18]. Integration of finite-rate chemistry also causes
strong load unbalancing among the processors and limits the time-step
advancement required to preserve a stable solution.

1.1. Motivation of this research

The renewed interest in supersonic aircraft travel promotes the rise
of studies whose goal is to propose novel and efficient engine designs,
vailable online 24 August 2023
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that should operate under strict environmental constraints. In this re-
gard, CFD simulations can help engine designers to predict performance
and emissions of the engines with different Sustainable Aviation Fuel
(SAFs). Reactive CFD simulations of supersonic/hypersonic combustion
are computationally demanding, because the flow transport is solved
in combination to the ODE system describing the finite-rate chem-
istry problem. The large resolution needed by reactive supersonic tests
makes the computational demand significant. The research described in
this paper is motivated by the need to speed up combustion simulations
with finite-rate chemistry, where chemical non-equilibrium effects are
imperative, in order to predict the pollutant emissions with different
fuels and combustion modes. In this sense, algorithmic developments
to speed up the solution of ODEs in reactive CFD solvers have been
already presented through the years, in the form of reduction [19,20],
tabulation [21,22], and Artificial Neural Networks strategies [23–25].
Their success is due to their speed if they are compared to Direct-
Integration (DI) of finite-rate chemistry, in particular with detailed
mechanisms. On the other hand, they usually require extensive pre-
processing operations [26] or case-dependent tuning of some user-input
parameters, that is not required with DI. Heterogeneous GPGPU com-
puting potentially represents a very effective solution to accelerate DI
of the chemistry problem, that can be solved on accelerators (GPU)
while the fluid transport and turbulence are computed on conventional
CPU-based hardware technologies. Such a strategy requires significant
re-design of the methods (software co-design) to work [27,28].

1.2. Goals and highlights

This paper discusses the extension of a density-based shock-
capturing flow solver for the treatment of supersonic combustion.
The solution of flow and species transport is done on the CPU via
an operator-splitting approach; the application of the Kurganov-Noel-
Petrova central upwind scheme ensures to capture the shocks with
a limited amount of numerical dissipation [29,30]. Chemical source
terms are computed by the solution of the finite-rate chemistry prob-
lem: the reaction mechanism [31,32] is solved in the form of Ordinary
Differential Equations (ODEs) by a novel GPU-ODE integration method
that is structured on the explicit time-step-adaptive Runge–Kutta Cash–
Karp approach and is linked to the flow transport computed on the
CPU. To improve the efficiency and the performance of the imple-
mentation, the resulting GPGPU strategy includes: (a) automatic load
balance between different hardware architectures (CPUs and GPUs);
(b) minimization of the data transfer overheads; (c) coalesced run-time
access of the GPU dynamic data. The resulting hybrid CPU/GPU solver
is built as a separate compilation unit (C++/CUDA dynamic library)
linked to the open-source C++ software OpenFOAM® [33,34]. The

PU-ODE integrator can be linked to any reactive flow solver available
n the selected framework. It is demonstrated that the proposed method
ignificantly accelerates the Direct Integration (DI) of the chemistry
roblem in reactive CFD computations.

.3. Paper structure

The paper is structured as follows. The governing equations for com-
ressible reactive supersonic flow problems are presented in Section 2.
etails of the applied discretization methods are presented in Section
. The design of the GPU-ODE integrator for the solution of finite-
ate chemistry is discussed in Section 4. Code verification is reported
n Section 5 via GPGPU simulations on single-cell batch reactors. The
ested chemical mechanism is subsequently used in Section 6 to simu-
ate via the GPGPU method the combustion phenomena in a scramjet
onfiguration from the DLR combustor facility [35–37]. Observations
n the computational speedup are reported in Section 7. Conclusions
2

re drawn in Section 8.
2. Governing equations for supersonic/hypersonic reactive flows

The compressible fluid-dynamic Navier–Stokes equations include
mass conservation, momentum and energy balances. They are written
as follows:
𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝑼 ) = 0 (1)

𝜕(𝜌𝑼 )
𝜕𝑡

+ ∇ ⋅ (𝜌𝑼𝑼 ) = −∇𝑝 + ∇ ⋅𝑹 + 𝑺𝑼 (2)

𝜕(𝜌𝐸)
𝜕𝑡

+ ∇ ⋅ (𝜌𝑼𝐸) + ∇ ⋅ (𝑼𝑝) = −∇ ⋅ 𝒒 + ∇ ⋅ (𝑹 ⋅ 𝑼 ) + �̇� + 𝑆𝑒 (3)

𝑹 is the viscous part of the stress tensor. In Eq. (3), the density
(𝑝, 𝑇 ) multiplies 𝐸 ∶= 𝑒(𝑇 ) + |𝑼 |

2 ∕2, i.e. the sum of the internal and
inetic energy per unit mass; 𝒒 ∶= 𝜆∇𝑇 represents the heat flux vector;
is the thermal conductivity; the terms 𝑺𝑼 and 𝑆𝑒 include sources

nd sinks for momentum (Eq. (2)) and energy (Eq. (3)), respectively.
̇ is the heat released by the combustion. Due to the presence in the
omain of 𝑁𝑠 chemical species, the system of equations is augmented.
he addition of 𝑁𝑠 − 1 convection–diffusion functions investigates the
volution of each mass fraction 𝑌𝑖 through space and time:

𝜕
(

𝜌𝑌𝑖
)

𝜕𝑡
+ ∇ ⋅ (𝜌𝑼 ) 𝑌𝑖 = ∇ ⋅

(

𝜌𝐷𝑖 ∇𝑌𝑖
)

+ �̇�𝑖 for 𝑖 ∈ [1, 𝑁𝑠 − 1] (4)

The mass fraction of the inert species 𝑌𝑁𝑠 is obtained by considering
a unitary sum:

𝑌𝑁𝑠 = 1 −
𝑁𝑠−1
∑

𝑖=1
𝑌𝑖 (5)

In Eq. (4), 𝐷𝑖 is the mass diffusion coefficient; in reactive simula-
tions, �̇�𝑖 is defined as:

̇ 𝑖 = 𝐾𝑖 �̇�𝑖 (6)

where the reaction rate of the ith specie �̇�𝑖

̇ 𝑖 = 𝑊𝑖

𝑁𝑅
∑

𝑗=1
𝜈𝑖,𝑗𝑄𝑗 (7)

is scaled by a specific set of coefficients 𝐾𝑖 depending on the selected
combustion model, to account eventually for the interaction between
turbulent mixing and chemistry in the CV. With laminar combustion,
the laminar finite-rate model is used and 𝐾𝑖 = 1 in Eq. (6). In Eq.
(7), 𝑊𝑖 is the molecular weight of the ith species; 𝜈𝑖,𝑗 is the ith species
stoichiometric coefficient, and 𝑄𝑗 is the non-equilibrium reaction rate
of the jth reaction defined as:

𝑄𝑗 = 𝜅𝑓,𝑗 (𝑇 , 𝑝)
∏

𝑖∈𝑃

(

𝜌𝑌𝑖
𝑊𝑖

)𝜈′𝑖,𝑗
− 𝜅𝑟,𝑗 (𝑇 , 𝑝)

∏

𝑖∈𝑅

(

𝜌𝑌𝑖
𝑊𝑖

)𝜈′′𝑖,𝑗
(8)

In Eq. (8), 𝜅𝑓,𝑗 (𝑇 , 𝑝) and 𝜅𝑟,𝑗 (𝑇 , 𝑝) are the forward and reverse rate
constants at the local fluid dynamic conditions [38], R and P denote
reactants and products, and the ratio 𝜌𝑌𝑖∕𝑊𝑖 is the molar concentration
of the ith species, that will be named 𝑐𝑖 in the following:

𝑐𝑖 =
𝜌𝑌𝑖
𝑊𝑖

(9)

The heat released by the combustion �̇� is:

�̇� =
𝑁𝑠
∑

𝑖=1

(

�̇�𝑖 𝐻𝑓,𝑖

)

(10)

in which 𝐻𝑓 is the enthalpy of formation. To achieve the closure of
he system, constitutive relations are needed; their formulation depends
n the properties of the continuous medium. The following set of
onstitutive relations is used:

– the generalized form of the Newton’s law of viscosity:

𝑹 = 𝜇
[

∇𝑼 + (∇𝑼 )𝑇
]

+
( 2
3
𝜇∇ ⋅ 𝑼

)

𝑰 (11)

in which 𝜇 is the dynamic viscosity and 𝑰 is the identity matrix.
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– a nine-coefficient polynomial computes the thermodynamic prop-
erties in standard-state for the ith gaseous species, as done in
the NASA chemical equilibrium code [39], to define the internal
energy as function of the pressure and temperature.

– the Equation of State (EoS) for the gas, that is assumed as a
mixture of 𝑁𝑠 species:

𝑝 = 𝜌𝑅0𝑇
𝑁𝑠
∑

𝑖=1

𝑌𝑖
𝑊𝑖

= 𝜌
𝑅0
𝑊
𝑇 with 1

𝑊
=

𝑁𝑠
∑

𝑖=1

𝑌𝑖
𝑊𝑖

(12)

where W is the mean molecular weight of the mixture. All the
species of the mixture are treated as perfect gases with common
temperature T; each species is described by Mendeleev–Clapeyron
EoS 𝑝𝑘 = 𝜌𝑘

𝑅0
𝑊𝑘
𝑇 , being 𝑅0 = 8.314 J/(mol K) the perfect

gas constant, 𝑝𝑖 and 𝜌𝑖 partial pressure and density of the ith
species, with 𝑝 =

∑𝑁𝑠
𝑖=1 𝑝𝑖 (Dalton law). Despite the assumption of

mixture of perfect gases is applied in this work, the solver natively
supports also the real-gas formulation.

– Eddy-viscosity based models for turbulence closure.

Transport properties, (mass diffusion coefficients, thermal conduc-
ivity and viscosity of the species) and thermochemical data for the
as phase are imported from the Cantera transport database through
he developed canteraToFoam utility. The time-step of integration
𝑡fluid of the Partial Differential Equations (PDEs) describing the fluid
ransport problem must comply with the CFL condition. The progressive
roduction/consumption of 𝑌𝑖 depends on the occurring combustion
henomena and it is regulated by the prescribed chemical chain and the
hermo-fluid dynamic conditions in the system. In finite-rate chemistry,
his implies the solution of a set of Ordinary Differential Equations
ODEs) structured on the overall combustion chain. The integration of
he ODE system of the kinetic problem is performed over a time interval
𝑡chem that must ensure computational stability [40]. If 𝛥𝑡chem < 𝛥𝑡fluid,
time step sub-cycling strategy is used and the reaction rate �̇�𝑖 is

omputed over 𝛥𝑡fluid = 𝑡𝑛+1 − 𝑡𝑛, as:

�̇�𝑖 =
(

𝑐𝑛+1𝑖 − 𝑐𝑛𝑖
) 𝑊𝑖
𝛥𝑡fluid

= 𝜌𝑛
(𝑌 𝑛+1𝑖 − 𝑌 𝑛𝑖 )
𝛥𝑡fluid

(13)

eing 𝑐𝑛𝑖 the molar concentration of the ith species at 𝑡𝑛, and 𝑐𝑛+1𝑖 that
t 𝑡𝑛+1. The update of the species concentration in the CV from time
to 𝑛 + 1 is computed by the selected ODE integrator. Implicit ODE

olvers may guarantee the best performance when the integration time
tep is extended, i.e when chemical stiffness is low or the fast modes
f the ODE system have reached an asymptotic value. Nonetheless, the
xplicit integration over a time is computationally cheaper, as it avoids
terative solutions and associated matrix inversions. In addition, explicit
ethods are well-suited to GPGPU computing because of their intrinsic
arallel nature [41]. For this reason, the explicit Runge–Kutta Cash–
arp (RKCK45) method with adaptive time stepping is selected in this
ork [32]. In RKCK45, the presence of embedded formulas produces

everal advantages [40]: a high-order accuracy can be reached with few
valuation functions; simple estimations about the size of subsequent
ntegration steps can be done via calculation of the truncation error.
y considering

= [𝒀 , 𝑇 ] (14)

a vector of 𝑁𝑠+1 variables, under the assumption of isobaric integration
(𝑑𝑝∕𝑑𝑡 = 0) within the time interval 𝛥𝑡𝑛fluid ∈ [𝑡𝑛; 𝑡𝑛+1], one has:

1 = 𝒚𝑛 + 𝛥𝑡chem

(

𝑎2,1
𝑑𝒚𝑛

𝑑𝑡

)

𝑗 = 𝒚𝑛 + 𝛥𝑡chem

(

𝑎𝑗+1,1
𝑑𝒚𝑛

𝑑𝑡
+

𝑗
∑

𝑖=2

(

𝑎𝑗+1,𝑖
𝑑𝒚𝑖−1
𝑑𝑡

)

)

𝑗 ∈ [2, 5] (15)

𝒚𝑛+1 = 𝒚𝑛 + 𝛥𝑡chem

(

𝑏1
𝑑𝒚𝑛

𝑑𝑡
+

6
∑

𝑖=2

(

𝑏𝑖
𝑑𝒚𝑖−1
𝑑𝑡

)

)

The constants in Eq. (15) come from the corresponding RKCK45
butcher tableau [32].
3

3. Variable positioning and spatial discretization

The conservation laws presented in Section 2 are written as:
𝜕Ψ
𝜕𝑡

+ ∇ ⋅ 𝐹 (Ψ) = 𝐒 (16)

Since 𝐹 (Ψ) represents the flux function of the conserved set of
ariables Ψ, its determination is fundamental to solve the investigated
roblem. Finite volume schemes based on collocated grid arrangements
re used for the spatial discretization. Variables are defined at the cell
enters and their derivatives are computed as follows [30]:

– Non-linear terms (convective terms): the linearization in the
control volume is:

∇ ⋅ (𝑼𝜳 ) ≃ 1
𝑉𝑃

∑

𝑓
𝑺𝑓 ⋅ 𝑼𝑓𝜳 𝑓 = 1

𝑉𝑃

∑

𝑓
𝛷𝑓𝜳 𝑓 (17)

being 𝑉𝑃 the volume of the polyhedral cell P, and 𝑺𝑓 the surface
of the f th face of the cell. ∑𝑓 defines a sum over the cell faces,
and 𝑺𝑓 ⋅ 𝑼𝑓 is the volume of fluid flowing through the face per
second. To accurately catch discontinuities such as slip lines and
shock waves in supersonic cases, the physical flux is replaced
by a numerical one 𝐹 (𝜳+

𝑓 ,𝜳
−
𝑓 ). 𝜳

+
𝑓 and 𝜳−

𝑓 respectively denote
the positive- and negative-sided interpolations of 𝜳 at the face f
based on the direction of the face normal vector (see Fig. 1(a)).
In the current approach, the Kurganov-Noelle-Petrova (KNP) cen-
tral upwind method is used. It follows:
∑

𝑓
𝛷𝑓𝜳 𝑓 =

∑

𝑓

[

𝛼𝛷+
𝑓𝜳

+
𝑓 + (1 − 𝛼)𝛷−

𝑓𝜳
−
𝑓 + 𝜔𝑓

(

𝜳−
𝑓 − 𝜳+

𝑓

)]

(18)

where 𝛼 is determined as:

𝛼 =
𝜓+
𝑓

𝜓+
𝑓 + 𝜓−

𝑓
(19)

based on one-sided local speeds of propagation, with a bias in the
upwind direction. The volumetric fluxes associated with the local
speeds of propagation are calculated as follows:

𝜓+
𝑓 = max

(

𝑐+𝑓
|

|

|

𝑺𝑓
|

|

|

+ 𝑼+ ⋅ 𝑺𝑓 , 𝑐−𝑓
|

|

|

𝑺𝑓
|

|

|

+ 𝑼− ⋅ 𝑺𝑓 , 0
)

(20)

𝜓−
𝑓 = max

(

𝑐+𝑓
|

|

|

𝑺𝑓
|

|

|

− 𝑼+ ⋅ 𝑺𝑓 , 𝑐−𝑓
|

|

|

𝑺𝑓
|

|

|

− 𝑼− ⋅ 𝑺𝑓 , 0
)

(21)

In the two definitions, 𝑐 =
√

𝛾𝑝∕𝜌 is the local speed of sound.
Also, the third contribution of Eq. (18) is needed only when the
convective term comes from a substantive derivative; it includes a
volumetric flux 𝜔𝑓 which depends on the maximum propagation
speed of any discontinuity between the positive- and negative-
sided interpolated values measured at the face f. For the KNP
method:

𝜔𝑓 = 𝛼(1 − 𝛼)(𝜓+
𝑓 + 𝜓−

𝑓 ) (22)

Simultaneously, the interpolation on face f of the 𝜳 variables is
carried out using a Total Variation Diminishing (TVD) scheme.
For a generic scalar quantity, at the f th face of a cell, the
linear interpolation between the neighbor (�̄�𝑁 ) and owner (�̄�𝑃 )
cell-averaged values produces:

𝜳 𝑓 = 𝑤𝑓 �̄�𝑃 + (1 −𝑤𝑓 )�̄�𝑁 (23)

in which 𝑤𝑓 and (1−𝑤𝑓 ) represent the central-difference weights.
From this, the TVD interpolation yields:

𝜳+
𝑓 = �̄�𝑃 + (1 −𝑤𝑓 ) 𝛽(𝑟𝑓,𝑃 )

(

�̄�𝑁 − �̄�𝑃
)

(24)

𝜳−
𝑓 = �̄�𝑁 +𝑤𝑓 𝛽(𝑟𝑓,𝑁 )

(

�̄�𝑃 − �̄�𝑁
)

(25)

in which the Van Leer limiter

𝛽(𝑟) =
|𝑟| + 𝑟 (26)

1 + 𝑟
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(

Fig. 1. (a) definition of the positive and negative sides of an arbitrary cell; (b) collocated grid arrangement of primary variables: velocity fluxes are interpolated at the face center;
c) computation of the surface gradient: non-orthogonal correction [30].
depends on the factors 𝑟𝑓,𝑃 and 𝑟𝑓,𝑁 that are measures of the
relative smoothness of the solution. For TVD, being 𝒅 ∶= 𝒙𝑁 −𝒙𝑃
the vector connecting the owner and the neighbor cell center, one
has:

𝑟𝑓,𝑖 = 2
( 𝐝 ⋅ (∇𝜳 )𝑖
�̄�𝑁 − �̄�𝑃

)

− 1 where 𝑖 = 𝑃 ,𝑁 (27)

– Gradient terms. By means of the Green-Gauss theorem, one has:

∇𝛹𝑃 ≃ 1
𝑉𝑃

∑

𝑓
𝛹𝑓𝑺𝑓 (28)

By using the KNP scheme, the interpolation procedure is split into
the positive- and negative-sided terms so that:
∑

𝑓
𝛹𝑓𝑺𝑓 =

∑

𝑓

(

𝛼𝛹+
𝑓 𝑺𝑓 + (1 − 𝛼)𝛹−

𝑓 𝑺𝑓
)

(29)

The same aforementioned limiter (Eq. (26)) is used for the inter-
polation.

– Diffusive term (Laplacian). By considering the diffusion co-
efficient 𝛤 , the diffusive term ∇ ⋅ (𝛤∇𝜳 ) can be manipulated
into:

∫𝑉
∇ ⋅ (𝛤∇𝜳 ) 𝑑𝑉 = ∫𝑆

(𝛤∇𝛹 )𝑓 ⋅ 𝒏𝑑𝑆 ≃
∑

𝑓
𝛤𝑓𝑺𝑓 ⋅ (∇𝜳 )𝑓

=
∑

𝑓
𝛤𝑓 |𝑺𝑓 |∇𝑛𝜳 𝑓 (30)

where ∇𝑛𝜳 𝑓 is the surface normal gradient of 𝜳 . The subscript
𝑓 in Eq. (30) indicates the cell-to-face interpolated quantities.
For the non-orthogonal grid of Fig. 1(b) in a collocated variable
arrangement, the surface gradient 𝑺𝑓 ⋅ (∇𝜳 )𝑓 is decomposed
into an orthogonal part (function of the owner and neighbor
cell values) and a non-orthogonal correction (full gradient, see
Fig. 1(c)):

𝑺𝑓 ⋅ (∇𝜳 )𝑓 = 𝐴(�̄�𝑁 − �̄�𝑃 )
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

orthogonal

+ 𝑩 (∇𝜳 )𝑓
⏟⏞⏟⏞⏟

non-orthogonal

(31)

being 𝐴 ∶= |𝑺𝑓 |2∕(𝑺𝑓 ⋅ 𝒅), and 𝑩 ∶= 𝑺𝑓 − 𝐴𝒅.

4. Solution method

The GPGPU solver employs the solution of the flow transport on
the CPU (host), while the ODEs describing the finite-rate chemistry
problem are solved on the GPU (device), see Fig. 2. In the CUDA
framework there are three levels of tasks, namely the grid, the block
and the thread (Fig. 3(b)). Blocks can be handled asynchronously
by the same Streaming Multiprocessor (SM); being all the resources
between blocks shared, the communication among blocks is expensive.
Each block can execute a certain number of threads. There is only a
4

lightweight synchronization overhead between the threads in a block.
Fig. 2. Structure of the shock-capturing reactive flow solver hyperFoam used for the
simulations.

All threads in a block run in parallel, in the Single Instruction Mul-
tiple Threads (SIMT) mode [42]. More precisely, each block contains
multiples of 32 threads called warps. Threads in a warp are executed
concurrently on a multiprocessor. Modern general-purpose GPUs have
a large amount of (slow) global memory and a small amount of (fast)
shared memory. Best practice guidelines to improve the performance
of a GPU solver suggest: (a) to saturate the GPU with computational
work and to balance the load among all the threads; (b) to reduce data
transfer/communication as much as possible between CPU and GPU;
(c) to limit the access of threads to the global memory, if possible. The
chemistry solver presented in this work addresses some of these issues
based on profiling outputs. Load balancing, communication overhead,
latency, synchronization overhead, and data locality are important
factors that may affect performance. To hide latency, asynchronous
GPU/CPU data transfer is adopted. To reduce the synchronization
overhead, the number of tasks running asynchronously should be max-
imized. To reduce data transfer, the use of shared memory is quite
critical [43]: it limits the threads’ access to the global memory and
favors an increase in the efficiency of the algorithm, but it might lead
to possible threads’ divergence [44]. To avoid threads’ divergence, the
code has been written in branchless form. Also, because of its limited
size, the chunk of GPU shared memory is dynamically allocated at the
beginning of the simulation and it is used by the GPU for: (a) the pro-
gressive explicit update of chemical concentrations and temperature;
(b) the calculation of production/consumption rate and (c) the deter-
mination of the maximum error. For the methodology proposed in this
work, the fat thread approach [45] has been applied with some effects
on data structure and organization: data access time is minimized by
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Fig. 3. Heterogeneous ODE integrator for the treatment of chemistry in reactive flow simulations.
relying on shared memory and registers, where data required by the
threads are stored. To reduce the communication overhead of data
transfers between the CPU and the GPU, time-dependent quantities are
stored in the dynamic global memory, they are accessed in a coalesced
manner and progressively stored in chunks of shared memory for the
amount of time needed for their use: these are defined as dynamic
data. Conversely, constant data are stored when the constant memory
is allocated, i.e. at the beginning of the simulation only. Molecular
weight of the species, stoichiometric coefficients and exponents of the
reaction mechanism, and the ODE solver settings are initialized on the
host and copied and stored in the GPU’s constant memory. Settings
of the ODE solver include solution controls (tolerances and maximum
number of iterations), scaling factors and time scaling controls. Time-
varying quantities are copied in the GPU’s cached global memory.
Thanks to the optimization of the memory access time and latency from
the threads, the fat thread approach results to be very fast because it
allows to achieve a double parallelization of the chemistry problem:
(a) the ODE system is solved in parallel for the computational cells (on
CPUs, this operation is done in serial); (b) for each computational cell
(i.e. CUDA block), each species in the reaction mechanism is handled
in parallel on multiple active threads (Fig. 3(b)). If the amount of
data to be transferred exceeds the maximum memory availability of
the GPU(s), the chemical problem is split into mesh chunks, each of
them containing a cluster of cells. If the mesh dimension exceeds the
maximum number of cells that can be concurrently treated by the
GPU streaming multiprocessors, a queue is generated and the overall
computational lag and latency is limited thanks to asynchrony. Besides,
a GPU block-level control over the cells is done to avoid unnecessary
operations. Chemically reactive cells are identified through their local
temperature that must be higher than a given threshold. No ODE
integration is performed on the other cells, that are cast-off. Finally,
the chunk of memory allocated for each GPU block is freed as soon as
the relative ODE system is solved to allow the handling of another cell.

5. Validation

A 10-species, 27-reaction H2–O2 reaction mechanism has been se-
lected for validation. Hydrogen chemical mechanisms are commonly
employed in rocket propulsion applications because they generate a
large specific impulse; Hydrogen is also a very good candidate to
promote decarbonization and supersonic commercial air transporta-
tion. Single-cell batch reactor tests, without flow transport, have been
initially employed to test the accuracy of the GPU-ODE chemistry solver
against the reference solution from the same solver on the CPU and
from Cantera.

Four combustion modes, reported in Table 1, have been selected
for verification. For all the tested operating conditions, the calculations
5

Table 1
Operating conditions (modes) tested for the H2–O2 mechanism.

Mode p (bar) T (K) 𝑌H2
(–) 𝑌O2

(–) 𝑌N2
(–)

1 [46] 2 1000 0.0145 0.2296 0.7559
2 1 1000 0.0145 0.2296 0.7559
3 1.5 2000 0.0145 0.2296 0.7559
4 0.5 2000 0.0284 0.2296 0.7420

are conducted considering a constant-pressure vessel. Results produced
by Cantera [47] are deemed as reference. The following quantities
are determined to produce metrics about the accuracy of the novel
GPU-ODE integrator:

(a) relative error between the legacy CPU solver and Cantera:

err𝑖,𝐶𝑃𝑈 =
|

|

𝑌𝑖,𝐶𝐴𝑁 − 𝑌𝑖,𝐶𝑃𝑈 ||
𝑌𝑖,𝐶𝐴𝑁

⋅ 100 (32)

(b) relative error between the GPGPU solver and Cantera:

err𝑖,𝐺𝑃𝑈 =
|

|

𝑌𝑖,𝐶𝐴𝑁 − 𝑌𝑖,𝐺𝑃𝑈 ||
𝑌𝑖,𝐶𝐴𝑁

⋅ 100 (33)

(c) relative error between the GPGPU solver and the CPU counter-
part:

diff𝑖 =
|

|

𝑌𝑖,𝐶𝑃𝑈 − 𝑌𝑖,𝐺𝑃𝑈 ||
𝑌𝑖,𝐶𝑃𝑈

⋅ 100 (34)

being:

𝑌𝑖 =
1
𝛥𝑡 ∫

𝑡

0
𝑌𝑖 𝑑𝑡 (35)

the cumulative chemical mass fraction of a specie. Comparisons of the
predicted flow temperature and the evolution in time of the mass frac-
tions of H2O2 and H2O (intermediate and product species respectively)
are reported in Fig. 4. The temperature and mass fraction reference
solutions are well matched by the implicit and explicit solutions of the
CPU ODE integrator and by the GPU-ODE approach. Relative errors for
the operating conditions simulated (modes of Table 1) are reported in
Fig. 5. Discrepancies between the GPU-ODE integrator and the explicit
CPU solutions are always lower than 0.2%, see Fig. 5(b), 5(d), 5(f),
5(h), and clearly are not affecting the accuracy of the results; their
presence can be attributed to the round-off error propagation linked
to the different parallelization employed on the different architectures.
As discussed in Section 4, the GPU-ODE solver must be explicit to take
advantage of the strong vectorization promoted by the architecture
of the accelerators. A fair analysis must include the best of both
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Fig. 4. Simulations of the auto-ignition of H2 − O2 in a batch reactor at the four operating modes reported in Table 1. ODEs integrations conducted at constant pressure.
technologies: the speed of computation of the implicit ODE integrators
running on CPUs will be therefore compared in the final section against
the explicit GPGPU solver.

6. Simulation of the supersonic combustion in a scramjet engine

The three-dimensional simulation of supersonic combustion in a
scramjet engine by the DLR combustor facility [35–37] is used to
validate the proposed GPGPU solver. Geometrical features of the scram-
jet engine geometry are reported in [11,16,48] and summarized in
6

Fig. 6. The configuration is made of a one-sided divergence channel that
confines preheated air and a wedge-shaped flame stabilizer. The upper
wall diverges to compensate the expansion of the boundary layer.

The height of the combustor at the entrance is 50 mm and the
length of the rectangular region is 100 mm. The overall length of the
combustor is 340 mm. The divergence angle is 3◦. Vitiated air enters
the combustor and mixes with the fuel injected from the holes cut in the
wedge. The strut injector is located at the centerline of the inlet section
at 25 mm from the bottom wall, and it starts at 77 mm downstream
of the entrance. The wedge structure measures 32 mm in length and
has a semi-open angle of 6◦. Thus, fuel injection is at 109 mm from
the reference origin along the 𝑥 direction. The width of the overall
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Fig. 5. Relative errors (see Eqs. (32)–(34)) of different ODE integrators for the operating modes described in Table 1. ODEs integrations are at constant pressure.
configuration is constant and measures 51 mm. Each fuel injection hole
has a diameter of 1 mm; each of the 15 circular holes is separated by
2.4 mm.

Boundary conditions of the problem are summarized in Table 2.
Fixed values of pressure, velocity and temperature are set at the air
and fuel inlets. The inlet air enters into the domain with Ma = 2; it is
7

preheated and includes a fraction of water in gaseous form. Hydrogen
is injected by the circular fuel inlets at Ma = 1. The chamber and
wedge walls are adiabatic. In the literature, the combustor has been
analyzed considering one [11,48], three [16], and five [16] of the
fifteen injectors, neglecting the effects of the side walls. In the current
study, the three-nozzle configuration [16] has been considered. The
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Fig. 6. Geometry of the three-dimensional scramjet test case.
Fig. 7. Body-fitted hexahedral Finite-Volume (FV) mesh of the scramjet engine. Adaptive Mesh Refinement (AMR) is dynamically applied at run-time in proximity of large
temperature gradients between neighboring cells. The number of cell elements ranges between 1.5 M (initial mesh) and 15 M.
Fig. 8. Shock wave pattern in the scramjet engine geometry (cold-flow case, no fuel injection). Comparison between simulations and experiments [11,17].
Table 2
Case setup: boundary conditions applied for the simulation of the scramjet engine.

𝑈 [m/s] 𝑇0 [K] 𝑝 [Pa] 𝑌N2
[–] 𝑌H2

[–] 𝑌H2O [–] 𝑌H2
[–]

Air 730 600 105 0.736 0.232 0.032 0
Fuel 1200 300 105 0 0 0 1

boundary layers of the upper and lower walls are not resolved [11];
this aspect was out of scope for the present work and requires further
studies.

The computational domain is reported in Fig. 7. In regions with
large temperature gradients, Adaptive Mesh Refinement (AMR) is dy-
namically applied at run-time to the initial body-fitted hexahedral mesh
of 1.5 M cell elements. The flow field is initialized by a precursor
cold-flow simulation to reproduce the complex shock wave pattern
(duration: 1.5 ⋅10−3 s); the duration of the reactive simulation is 5 ⋅10−3
s. A hot spot in the recirculating region is set to ignite the mixture.

6.1. Shock wave pattern in the scramjet engine

Predictions from non-reactive simulations to determine the shock
wave pattern, with and without fuel injection, are compared against
experimental Schlieren images [11,17]. The supersonic air from the
inlet is deflected at the tip of the wedge; two shocks are formed defining
an initial symmetrical behavior on each side; after impacting the upper
and lower walls, they are reflected towards the center. Because of the
divergence at the upper wall, the trajectories of the shocks become
asymmetric. In proximity of the corners, two expansion fans are gener-
ated as a result of flow divergence. The flow at the walls of the wedge
also separates. In absence of fuel injection (Fig. 8), a subsonic triangular
recirculation zone forms behind the wedge structure; in this region,
the mixing of the fuel with the surrounding vitiated air is favored also
when the fuel injection is activated. Due to the low pressure in the
recirculation region, the two originated shear layers tend to converge
towards the centerline (see Fig. 8). For the same reason, the jet expands
into a diamond-shaped structure as the fuel is injected (Fig. 9).

The interaction between the fuel and the shear layers produces a
series of compression waves. Further downstream, the upper oblique
8

wave merges with the transmitted bottom one. A slip line is formed and
it propagates towards the upper wall. At the bottom, the compression
waves originated from the shear layer interact with the expansion fan;
reflected shocks intersect once more further downstream. Fuel injection
influences the flow behavior at the centerline and the reflection of the
shocks downstream of the wedge: the averaged flow behavior shows
that the wake slightly deviates from the centerline and moves upwards,
with a thickness that progressively enlarges towards the end of the
considered domain (Fig. 9).

Pressure, temperature, and velocity fields were also available from
the experiments [35–37]. Pressure values were collected near the bot-
tom wall and over the centerline. At the wall, an initial decrease of
pressure is linked to the presence of the expansion fan from the lower
corner of the wedge. Then, the pressure increases where the lower wall
is impacted by: (a) the primary shock and (b) the shock transmitted
from the top. Good agreement is found against experimental solutions
available in [11,16,49]. A small drop in the computed pressure for
𝑥 ≃ 0.19 m is observed, and the pressure peak further downstream
is underestimated (Fig. 10(a)). The experimental results show only
one peak (upwards) located at 𝑥 ≃ 0.19 m. The observed differences
are linked to: (a) the recompression of the shear layer which occurs
slightly more downstream in the computational simulation; (b) the
separation of the boundary layer at the bottom wall as a consequence
of the shock/boundary layer interaction, which is unresolved in the
computational analysis. In the simulations, the two collapsed wake
systems impinge the bottom wall at two slightly different positions, as
shown in Fig. 8. That affects the location and the magnitude of the
peak. Results of Fig. 10(a) are also in good agreement with [11]. At
the centerline, the distribution of pressure has marginal discrepancies
in correspondence of the two peak values (x ≃ 0.16 m and x ≃ 0.24 m):
this can be explained as the consequence of a small difference in the
estimation of the vertical position of the intersection of the two major
shock systems. Such variation marginally influences the first peak value
at the centerline and delays the second one. These results agree with
those of [11,13,49].
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Fig. 9. Shock wave pattern in the scramjet engine geometry (with fuel injection). Comparison between cold-flow simulations and experiments [11,17]. Time-averaged gradients
of density are marked by dark lines.
Fig. 10. Scramjet engine, absolute pressure of the flow at: (a) bottom wall (b) centerline. Simulations are non-reactive.
Fig. 11. Comparison of density gradients for the hot simulation: Schlieren image [11] (left) vs. numerical solution (right).
6.2. Simulation of the supersonic combustion in the scramjet engine

Starting from the flow field of the precursor simulation, reactive
flow computations have been carried out. The ignition of the reactive
mixture is very challenging in supersonic flow conditions. In this work,
an ignition point (hot spot) in the recirculating region has been set to
trigger the combustion. The evolution of the reactive region modifies
the shock pattern behind the struct injector, while the pattern of the
waves upstream is unchanged (see Fig. 15). The formation of recircula-
tion regions favors flame stabilization. The supersonic flow impinging
the struct continues to produce two oblique shocks that, in turn,
impinge the bottom and the upper walls and bounce back towards the
central region. The core flow at the center is subjected to augmented
turbulence because of the occurring combustion. For this reason, the
regularity of the shock wave pattern in the far region of the combustor
is disrupted, as the core region enlarges. A comparison between an
experimental Schlieren image and the correspondent numerical density
gradient plot is reported in Fig. 11 for the reactive simulation. The
rectangular region of Fig. 11 comes from the area marked by a dotted
line in Fig. 9(a). The representation shows a good agreement for both
the core development and the core enlargement.

The behavior of the pressure at the base largely varies when com-
pared to the non reactive case. The pressure slightly increases (see
Fig. 12); the core wake becomes quasi parallel to the freestream flow
as observed in [11], thus only small waves are observed further down-
stream. From this, it is derived that only small variations in pressure
can be experienced towards the outlet of the combustor.
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The flowfield has been quantitatively measured by DLR using par-
ticle image displacement velocimetry and Laser Doppler Velocimetry
(LDV). Experimental results of the velocity available at 𝑥 = 11 mm,
58 mm, and 99 mm from the fuel inlet section [11,16,17] were used
for code validation (Fig. 13). Computed mean flow quantities were
time-averaged over 10 flow-through times (the first flow-though time
was discarded). The velocity profile at the first location slightly de-
viates from the experiments in the core region (Fig. 13(a)), but is in
accordance with other numerical results from different approaches. The
extent of the recirculation region seems to be marginally overpredicted
in the numerical simulation. The minimum velocity in the core region is
lower than its measured counterpart. Nonetheless, similar observations
have been derived in the LES studies that have been published in the
literature [11,13,48]. Further downstream, the agreement improves
(Figs. 13(b) and 13(c)). The different location of the predicted velocity
drop (and peak) along the y direction (Fig. 13(c)) is still attributed to
the poor modeling of the boundary layer.

The temperature is investigated quantitatively by comparing Coher-
ent anti-Stokes Raman spectroscopy solutions at 𝑥 = 11 mm, 58 mm,
and 166 mm (Fig. 14). The temperature peaks predicted at the first
location are slightly higher than the measured counterparts; the sym-
metric profile of the experiments is correctly captured. A better agree-
ment is appreciable downstream (Figs. 14(b) and 14(c)), even though
the region where combustion takes place is slightly larger than the
experimental one (Fig. 14(b)). The reactive simulation is run once more
by using the GPU-ODE integrator, thus exploiting an heterogeneous
application. Results in green contained in Fig. 14 confirm the good

agreement against full-CPU solutions used as reference.
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Fig. 12. Pressure distribution at the bottom wall for the reactive flow simulation. Comparison between simulations and experiments [11].
Fig. 13. Time-averaged mean axial velocity at different positions along the flowpath with supersonic combustion.
Fig. 14. Mean temperature [K] at different positions along the flowpath.
Finally, Fig. 15 (upper line) reports the temperature flow distribu-
ion within a threshold and is used to highlight the shape of the flame
t two different timesteps. The shape of the flame clearly highlights
he presence of flow instabilities and small recirculating regions at
he interface. Large recirculation vortices are present within the core
egion: they are generated behind the struct and carried towards the
nd of the domain as they evolve. The penetration of the fuel jet
s lower than in the non-reacting case. Again, it is clear how the
hear layer instabilities generated at the corners of the flame stabilizer
o not converge towards the centerline, but they interact with the
ecirculation bubble behind the struct.

. Performance

The scalability of the GPGPU solver hyperFoam is investigated
onsidering the initial coarse mesh used for the supersonic test case
ver a span of the first 100 time-steps (the time to read the mesh from
10
disk is included). The AMR is not active in this test, so the grid counts
a limited number of cells (1.5 M). The scalability for the cold-flow
simulation is linear only within a limited range (up to about 24 cores,
Fig. 16(a)). The same holds if chemical species are tracked without
reactions (Fig. 16(b)). Finally, if combustion with finite-rate chemistry
is triggered, the computational load increases because: (a) the number
of convection–diffusion equations is larger due to the tracking of the
intermediate species; (b) the solution of finite-rate chemistry ODEs is
now active. In this case, linear scalability is preserved for a higher
number of cores (Fig. 16(c)).

The use of GPGPU solver is advantageous if:

tCPU > tGPU = t𝑓,GPU + t𝑘,GPU + t𝑟,GPU (36)

being tCPU and tGPU the times to solve the finite-rate chemistry prob-
lem on the CPU and the GPU respectively; t𝑓,GPU is the time taken
to allocate the GPU memory, collect the CPU data and perform the
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Fig. 15. Combustion simulation at two different time steps; representation of the flame via threshold (top); density field (bottom).
Fig. 16. Scalability of the reactive flow solver on the initial coarse mesh (1.5 M cells, AMR deactivated): (a) cold-flow simulation; (b) cold-flow simulation with specie-transport;
(c) reactive flow simulation with finite-rate chemistry.
forward data transfer (CPU-to-GPU); t𝑘,GPU is the time required for the
kernel call and the actual ODE integration via GPU; t𝑟,GPU is the time to
complete the backward data transfer (GPU-to-CPU). From Eq. (36), it
is apparent that the speedup due to the vectorization employed by the
GPU during the calculations of the chemistry problem becomes more
favorable as the size of the problem increases. For the reactive flow
simulation, the GPGPU solver using 128 cores and a Nvidia V100 GPU
card proved to be 9.3X faster with respect to the same solver fully
running on the same 128 CPU cores.

8. Conclusions

An explicit time-step-adaptive ODE solver has been re-designed to
work on accelerators (GPU) and to be efficiently coupled to a shock-
capturing density-based solver for the solution of supersonic flows. The
co-design of the GPGPU strategy allows to improve the efficiency and
performance of combustion calculations, thanks to a three-level paral-
lelization where the fluid dynamic problem is split over multiple CPU
processor cores, while the chemistry problem is solved on the hard-
ware accelerators in clusters of cells. On the GPU, blocks and threads
execute the simultaneous/parallel solution of the reaction mechanism.
As a result, the explicit 5th order Runge–Kutta method employs the
parallel integration of the chemistry ODEs on GPUs with significant
speedups if compared to the corresponding CPU-based version. Main
features of the proposed methodology are: (a) it is fully automatic,
it does not require any manual specific operation for pre-processing;
(b) its efficiency increases as the size and the stiffness of the kinetic
mechanism becomes large; (c) it can work on multiple CPUs/GPUs
for high-fidelity simulations, but it also results advantageous when
applied to small/medium size problems, since it makes use of the full
potential of the hardware of modern workstations. The strategy has
been applied to the simulation of supersonic combustion of Hydrogen.
Validation tests against solutions from established CPU ODE integrators
show a very good accordance of the results, with speedups that are
11
proportional to the size of the mechanism. Finally, the CFD simulation
of a supersonic combustion scramjet engine is presented. The GPGPU
approach is able to well reproduce the experimental trends and provide
results comparable to traditional solvers. The speedup achieved for
this set of tests is 9.3X. The performance gain is limited by: (a) the
slow data transfer between the CPU and the GPUs, occurring at each
time step; (b) the stiffness of the ODE system: to take advantage of
the parallel architecture of the GPU, the use of explicit integrators
is favored. The GPU ODE solver for the finite-chemistry problem is
developed in the form of a dynamic object-oriented C++/CUDA library.
The proposed GPU-ODE chemistry integrator can be combined with
any flow solver (compressible, multiphase, ecc.) based on the operator-
splitting technique, where the solution of chemistry is decoupled from
the fluid transport.

Current work is about the implementation of the amgx4Foam
library. Structured on AmgX [50], it solves the linear algebra of the
Partial Differential Equations via GPU.
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