82 research outputs found

    First-in-human pharmacokinetics of tamoxifen and its metabolites in the milk of a lactating mother. A case study

    Get PDF
    Background Breast cancer represents the most frequent neoplasm diagnosed in women of childbearing age. When the tumour is oestrogen receptor-positive, tamoxifen is among the recommended endocrine treatments. Lactating women are advised not to breastfeed while receiving tamoxifen. However, information about tamoxifen transfer into breast milk is lacking. Methods We measured the concentration of tamoxifen and its metabolites by liquid chromatography-tandem mass spectrometry in the milk of a nursing mother that was treated for pregnancy-associated breast cancer diagnosed a few months after delivery. She was advised not to breastfeed her child and she collected milk samples for 23 days while the baby was fed with formula. Results Tamoxifen concentrations in milk increased reaching a maximum of 214 nM. The two active metabolitesZ-4-hydroxy-tamoxifen and Z-endoxifen, could not be quantified in milk the first days after tamoxifen intake, but increased over time and reached clinically significant levels after day 18. Conclusion This study demonstrates for the first time in human that tamoxifen and its metabolites transfer into milk. Since tamoxifen has a complete oral bioavailability, a long half-life (>7 days) and may interfere with the normal development of the infant, mothers should not breastfeed during tamoxifen treatment

    Infectious Disease Ontology

    Get PDF
    Technological developments have resulted in tremendous increases in the volume and diversity of the data and information that must be processed in the course of biomedical and clinical research and practice. Researchers are at the same time under ever greater pressure to share data and to take steps to ensure that data resources are interoperable. The use of ontologies to annotate data has proven successful in supporting these goals and in providing new possibilities for the automated processing of data and information. In this chapter, we describe different types of vocabulary resources and emphasize those features of formal ontologies that make them most useful for computational applications. We describe current uses of ontologies and discuss future goals for ontology-based computing, focusing on its use in the field of infectious diseases. We review the largest and most widely used vocabulary resources relevant to the study of infectious diseases and conclude with a description of the Infectious Disease Ontology (IDO) suite of interoperable ontology modules that together cover the entire infectious disease domain

    USE OF CAGED MUSSEL MYTILUS GALLOPROVINCIALIS IN AN ECOTOXICOLOGICAL APPROACH TO ASSESS ENVIRONMENTAL IMPACT IN OFF-SHORE ACTIVITIES

    Get PDF
    Abstract Mediterranean mussels, Mytilus galloprovincialis, are well recognized bioindicator organisms which can be easily caged in investigated areas to assess the impact of anthropogenic activities. In this work a monitoring protocol was developed for off-shore installations in the Adriatic sea. Integration of chemical analyses with a wide range of biomarkers analysed in mussels caged at 2 platforms, allowed to evaluate the biological disturbance and confirmed the utility of the ecotoxicological approach for monitoring off-shore activities. Keywords : Bio-indicators, Adriatic Sea. Several environmental issues are associated with the off-shore oil and gas industry, from the impact caused during installation to various form of disturbance related to daily ship traffic, extraction activities, maintenance of structures and, finally, decommissioning of old platforms. During the last year a monitoring protocol with caged mussels, Mytilus galloprovincialis, has been developed, to evaluate the potential ecotoxicological effects caused from the off-shore platform "Giovanna" in the Adriatic sea. Obtained results allowed to exclude marked biological disturbance and demonstrated the suitability of this approach. In this respect considering "Giovanna" as model platform, the monitoring protocol with caged mussel has been extended including also another off-shore installation, the "Emilio" platform. In this work native mussels were collected on a seasonal basis from a reference site on the Adriatic coast (Portonovo, Ancona) and transplanted for 4-6 weeks in both the sampling area and to the investigated platform "Giovanna" (42 ‱ 46' 060N, 14 ‱ 27' 750E) and Emilio (42 ‱ 56' 305 N; 14 ‱ 13' 915 E). After the translocation period, mussels were recovered dissected tissues frozen in liquid nitrogen and maintained at -80 ‱ C until analyses. Chemical analyses on trace metals (arsenic, cadmium, chromium, copper, iron, mercury, manganese, nickel, lead, zinc) in mussels tissues An overall evaluation of results confirmed the absence of marked biological effects caused by the activities of "Giovanna" platform, as already demonstrated during the previous monitoring project. More variations were observed in mussels translocated to "Emilio", i.e. higher activities of glutathione S-transferases, catalase and peroxisomal proliferation decrease of oxyradical scavenging capacity toward hydroxyl and peroxyl radicals and lysosomal destabilization (inhibition of neutral red retention time), indicating an onset of impairment condition in the organisms. Compared to mussels transplanted at the reference site, those from "Emilio" platform did not exhibit more elevated concentrations for the various metals and only for zinc and cadmium an higher bioavailability was detected close to the platform, suggesting the influence of galvanic anodes for cathodic protection. The overall results of this work confirmed the utility of using caged mussels as an additional contribution for monitoring off-shore activities and provided an ecotoxicological protocol based on cellular biomarkers for the early detection of biological disturbance

    Bringing onco‐innovation to Europe’s healthcare systems. The potential of biomarker testing, real world evidence, tumour agnostic therapies to empower personalised medicine

    Get PDF
    Rapid and continuing advances in biomarker testing are not being matched by uptake in health systems, and this is hampering both patient care and innovation. It also risks costing health systems the opportunity to make their services more efficient and, over time, more economical. The potential that genomics has brought to biomarker testing in diagnosis, prediction and research is being realised, pre‐eminently in many cancers, but also in an ever‐wider range of conditions— notably BRCA1/2 testing in ovarian, breast, pancreatic and prostate cancers. Nevertheless, the implementation of genetic testing in clinical routine setting is still challenging. Development is impeded by country‐related heterogeneity, data deficiencies, and lack of policy alignment on standards, approval—and the role of real‐world evidence in the process—and reimbursement. The acute nature of the problem is compellingly illustrated by the particular challenges facing the development and use of tumour agnostic therapies, where the gaps in preparedness for taking advantage of this innovative approach to cancer therapy are sharply exposed. Europe should already have in place a guarantee of universal access to a minimum suite of biomarker tests and should be planning for an optimum testing scenario with a wider range of biomarker tests integrated into a more sophisticated health system articulated around personalised medicine. Improving healthcare and winning advantages for Europe’s industrial competitiveness and innovation require an appropriate policy framework—starting with an update to outdated recommendations. We show herein the main issues and proposals that emerged during the previous advisory boards organised by the European Alliance for Personalized Medicine which mainly focus on possible scenarios of harmonisation of both oncogenetic testing and management of cancer patients

    Bringing onco-innovation to Europe’s healthcare systems: the potential of biomarker testing, real world evidence, tumour agnostic therapies to empower personalised medicine

    Get PDF
    International audienceRapid and continuing advances in biomarker testing are not being matched by uptake in health systems, and this is hampering both patient care and innovation. It also risks costing health systems the opportunity to make their services more efficient and, over time, more economical. The potential that genomics has brought to biomarker testing in diagnosis, prediction and research is being realised, pre-eminently in many cancers, but also in an ever-wider range of conditions—notably BRCA1/2 testing in ovarian, breast, pancreatic and prostate cancers. Nevertheless, the implementation of genetic testing in clinical routine setting is still challenging. Development is impeded by country-related heterogeneity, data deficiencies, and lack of policy alignment on standards, approval—and the role of real-world evidence in the process—and reimbursement. The acute nature of the problem is compellingly illustrated by the particular challenges facing the development and use of tumour agnostic therapies, where the gaps in preparedness for taking advantage of this innovative approach to cancer therapy are sharply exposed. Europe should already have in place a guarantee of universal access to a minimum suite of biomarker tests and should be planning for an optimum testing scenario with a wider range of biomarker tests integrated into a more sophisticated health system articulated around personalised medicine. Improving healthcare and winning advantages for Europe’s industrial competitiveness and innovation require an appropriate policy framework—starting with an update to outdated recommendations. We show herein the main issues and proposals that emerged during the previous advisory boards organised by the European Alliance for Personalized Medicine which mainly focus on possible scenarios of harmonisation of both oncogenetic testing and management of cancer patients

    Hot or not? Discovery and characterization of a thermostable alditol oxidase from Acidothermus cellulolyticus 11B

    Get PDF
    We describe the discovery, isolation and characterization of a highly thermostable alditol oxidase from Acidothermus cellulolyticus 11B. This protein was identified by searching the genomes of known thermophiles for enzymes homologous to Streptomyces coelicolor A3(2) alditol oxidase (AldO). A gene (sharing 48% protein sequence identity to AldO) was identified, cloned and expressed in Escherichia coli. Following 6xHis tag purification, characterization revealed the protein to be a covalent flavoprotein of 47 kDa with a remarkably similar reactivity and substrate specificity to that of AldO. A steady-state kinetic analysis with a number of different polyol substrates revealed lower catalytic rates but slightly altered substrate specificity when compared to AldO. Thermostability measurements revealed that the novel AldO is a highly thermostable enzyme with an unfolding temperature of 84 °C and an activity half-life at 75 °C of 112 min, prompting the name HotAldO. Inspired by earlier studies, we attempted a straightforward, exploratory approach to improve the thermostability of AldO by replacing residues with high B-factors with corresponding residues from HotAldO. None of these mutations resulted in a more thermostable oxidase; a fact that was corroborated by in silico analysis

    Bringing onco‐innovation to Europe’s healthcare systems: The potential of biomarker testing, real world evidence, tumour agnostic therapies to empower personalised medicine

    Get PDF
    Rapid and continuing advances in biomarker testing are not being matched by uptake in health systems, and this is hampering both patient care and innovation. It also risks costing health systems the opportunity to make their services more efficient and, over time, more economical. The potential that genomics has brought to biomarker testing in diagnosis, prediction and research is being realised, pre‐eminently in many cancers, but also in an ever‐wider range of conditions— notably BRCA1/2 testing in ovarian, breast, pancreatic and prostate cancers. Nevertheless, the implementation of genetic testing in clinical routine setting is still challenging. Development is impeded by country‐related heterogeneity, data deficiencies, and lack of policy alignment on standards, approval—and the role of real‐world evidence in the process—and reimbursement. The acute nature of the problem is compellingly illustrated by the particular challenges facing the development and use of tumour agnostic therapies, where the gaps in preparedness for taking advantage of this innovative approach to cancer therapy are sharply exposed. Europe should already have in place a guarantee of universal access to a minimum suite of biomarker tests and should be planning for an optimum testing scenario with a wider range of biomarker tests integrated into a more sophisticated health system articulated around personalised medicine. Improving healthcare and winning advantages for Europe’s industrial competitiveness and innovation require an appropriate policy framework—starting with an update to outdated recommendations. We show herein the main issues and proposals that emerged during the previous advisory boards organised by the European Alliance for Personalized Medicine which mainly focus on possible scenarios of harmonisation of both oncogenetic testing and management of cancer patients

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    • 

    corecore