11 research outputs found

    Oxygen-sensing by ion channels and mitochondrial function in carotid body glomus cells

    Get PDF
    Carotid body glomus cells release transmitters in response to hypoxia due to the increase of excitability resulting from inhibition of O2-regulated K+ channels. The mechanisms involved in the detection of changes of O2 tension are unknown. Inhibition of the mitochondrial electron transport chain (ETC) at proximal and distal complexes induces external Ca2+-dependent catecholamine secretion. At saturating concentration of the ETC inhibitors, the cellular response to hypoxia is maintained. However, rotenone, a complex I blocker, selectively occludes the responsiveness to hypoxia of glomus cells in a dosedependent manner. The effect of rotenone is not mimicked by complex I inhibitors acting on different sites. We have also generated a knock-out mouse lacking SDHD, the small membrane-anchoring protein of the succinate dehydrogenase (complex II) of the mitochondrial electron transport chain. Homozygous Sdhd -/- animals die at early embryonic stages. Heterozygous Sdhd +/- mice show a general, non-compensated, deficiency of complex II activity, and abnormal enhancement of resting carotid body secretion rate due to decrease of K+ conductance and persistent Ca2+ influx into glomus cells. However, responsiveness to hypoxia of carotid bodies from Sdhd +/- mice remains intact. These data strongly suggest that sensitivity to hypoxia of carotid body glomus cells is not linked in a simple way to mitochondrial electron flow. Nevertheless, it is possible that a rotenone-sensitive molecule critically participates in acute carotid body oxygen sensing

    The Mitochondrial SDHD Gene Is Required for Early Embryogenesis, and Its Partial Deficiency Results in Persistent Carotid Body Glomus Cell Activation with Full Responsiveness to Hypoxia

    Get PDF
    The SDHD gene encodes one of the two membrane-anchoring proteins of the succinate dehydrogenase (complex II) of the mitochondrial electron transport chain. This gene has recently been proposed to be involved in oxygen sensing because mutations that cause loss of its function produce hereditary familiar paraganglioma, a tumor of the carotid body (CB), the main arterial chemoreceptor that senses oxygen levels in the blood. Here, we report the generation of a SDHD knockout mouse, which to our knowledge is the first mammalian model lacking a protein of the electron transport chain. Homozygous SDHD_/_ animals die at early embryonic stages. Heterozygous SDHD_/_ mice show a general, noncompensated deficiency of succinate dehydrogenase activity without alterations in body weight or major physiological dysfunction. The responsiveness to hypoxia of CBs from SDHD_/_ mice remains intact, although the loss of an SDHD allele results in abnormal enhancement of resting CB activity due to a decrease of K_ conductance and persistent Ca2_ influx into glomus cells. This CB overactivity is linked to a subtle glomus cell hypertrophy and hyperplasia. These observations indicate that constitutive activation of SDHD_/_ glomus cells precedes CB tumor transformation. They also suggest that, contrary to previous beliefs, mitochondrial complex II is not directly involved in CB oxygen sensing

    Differential impairment of catecholaminergic cell maturation and survival by genetic mitochondrial complex II dysfunction

    Get PDF
    The SDHD gene (subunit D of succinate dehydrogenase) has been shown to be involved in the generation of paragangliomas and pheochromocytomas. Loss of heterozygosity of the normal allele is necessary for tumor transformation of the affected cells. As complete SdhD deletion is lethal, we have generated mouse models carrying a “floxed” SdhD allele and either an inducible (SDHD-ESR strain) or a catecholaminergic tissue-specific (TH-SDHD strain) CRE recombinase. Ablation of both SdhD alleles in adult SDHD-ESR mice did not result in generation of paragangliomas or pheochromocytomas. In contrast, carotid bodies from these animals showed smaller volume than controls. In accord with these observations, the TH-SDHD mice had decreased cell numbers in the adrenal medulla, carotid body, and superior cervical ganglion. They also manifested inhibited postnatal maturation of mesencephalic dopaminergic neurons and progressive cell loss during the first year of life. These alterations were particularly intense in the substantia nigra, the most affected neuronal population in Parkinson’s disease. Unexpectedly, TH_ neurons in the locus coeruleus and group A13, also lacking the SdhD gene, were unaltered. These data indicate that complete loss of SdhD is not sufficient to induce tumorigenesis in mice. They suggest that substantia nigra neurons are more susceptible to mitochondrial damage than other catecholaminergic cells, particularly during a critical postnatal maturation period

    The Granulocyte colony-stimulating factor produces long-term changes on gene and miRNA expression profiles in CD34+ cells from healthy donors

    Get PDF
    Granulocyte colony-stimulating factor is the most commonly used cytokine for the mobilization of hematopoietic progenitor cells from healthy donors for allogeneic stem cell transplantation. Although the administration of this cytokine is considered safe, knowledge about its long-term effects, especially in hematopoietic progenitor cells, is limited. On this background, the aim of our study was to analyze whether or not granulocyte colony-stimulating factor induces changes in gene and microRNA expression profiles in hematopoietic progenitor cells from healthy donors, and to determine whether or not these changes persist in the long-term. For this purpose, we analyzed the whole genome expression profile and the expression of 384 microRNA in CD34(+) cells isolated from peripheral blood of six healthy donors, before mobilization and at 5, 30 and 365 days after mobilization with granulocyte colony-stimulating factor. Six microRNA were differentially expressed at all time points analyzed after mobilization treatment as compared to the expression in samples obtained before exposure to the drug. In addition, 2424 genes were also differentially expressed for at least 1 year after mobilization. Of interest, 109 of these genes are targets of the differentially expressed microRNA also identified in this study. These data strongly suggest that granulocyte colony-stimulating factor modifies gene and microRNA expression profiles in hematopoietic progenitor cells from healthy donors. Remarkably, some changes are present from early time-points and persist for at least 1 year after exposure to the drug. This effect on hematopoietic progenitor cells has not been previously reported

    Cannabinoid derivatives exert a potent anti-myeloma activity both in vitro and in vivo

    Get PDF
    12 p.-6 fig.-1 tab.Although hematopoietic and immune system show high levels of the cannabinoid receptor CB2, the potential effect of cannabinoids on hematologic malignancies has been poorly determined. Here we have investigated their anti-tumor effect in multiple myeloma (MM). We demonstrate that cannabinoids induce a selective apoptosis in MM cell lines and in primary plasma cells of MM patients, while sparing normal cells from healthy donors, including hematopoietic stem cells. This effect was mediated by caspase activation, mainly caspase-2, and was partially prevented by a pan-caspase inhibitor. Their pro-apoptotic effect was correlated with an increased expression of Bax and Bak, a decrease of Bcl-xL and Mcl-1, a biphasic response of Akt/PKB and an increase in the levels of ceramide in MM cells. Inhibition of ceramide synthesis partially prevented apoptosis, indicating that these sphingolipids play a key role in the pro-apoptotic effect of cannabinoids in MM cells. Remarkably, blockage of the CB2 receptor also inhibited cannabinoid-induced apoptosis. Cannabinoid derivative WIN-55 enhanced the anti-myeloma activity of dexamethasone and melphalan overcoming resistance to melphalan in vitro. Finally, administration of cannabinoid WIN-55 to plasmacytoma-bearing mice significantly suppressed tumor growth in vivo. Together, our data suggest that cannabinoids may be considered as potential therapeutic agents in the treatment of MM.Grant sponsor: Junta de Andalucía; Grant numbers: PI-0355–2013 and AC-0062–2013; Grant sponsor: Instituto de Salud Carlos III;Grant numbers: PI14/02074 and CP12/03273.Peer reviewe

    Relación de la transcripción con la recombinación entre secuencias repetidas en S. cerevisiae

    No full text
    La recombinación genética es un proceso fundamental en el metabolismo del ADN en todos los organismos vivos. Existen multitud de procesos biológicos en los que la recombinación está directamente implicada

    An O-2-sensitive glomus cell-stem cell synapse induces carotid body growth in chronic hipoxia

    No full text
    Neural stem cells (NSCs) exist in germinal centers of the adult brain and in the carotid body (CB), an oxygen-sensing organ that grows under chronic hypoxemia. How stem cell lineage differentiation into mature glomus cells is coupled with changes in physiological demand is poorly understood. Here, we show that hypoxia does not affect CB NSC proliferation directly. Rather, mature glomus cells expressing endothelin-1, the O2-sensing elements in the CB that secrete neurotransmitters in response to hypoxia, establish abundant synaptic-like contacts with stem cells, which express endothelin receptors, and instruct their growth. Inhibition of glomus cell transmitter release or their selective destruction markedly diminishes CB cell growth during hypoxia, showing that CB NSCs are under the direct "synaptic" control of the mature O2-sensitive cells. Thus, glomus cells not only acutely activate the respiratory center but also induce NSC-dependent CB hypertrophy necessary for acclimatization to chronic hypoxemia

    Cannabinoid derivatives exert a potent anti-myeloma activity both in vitro and in vivo.

    No full text
    Although hematopoietic and immune system show high levels of the cannabinoid receptor CB2, the potential effect of cannabinoids on hematologic malignancies has been poorly determined. Here we have investigated their anti-tumor effect in multiple myeloma (MM). We demonstrate that cannabinoids induce a selective apoptosis in MM cell lines and in primary plasma cells of MM patients, while sparing normal cells from healthy donors, including hematopoietic stem cells. This effect was mediated by caspase activation, mainly caspase-2, and was partially prevented by a pan-caspase inhibitor. Their pro-apoptotic effect was correlated with an increased expression of Bax and Bak, a decrease of Bcl-xL and Mcl-1, a biphasic response of Akt/PKB and an increase in the levels of ceramide in MM cells. Inhibition of ceramide synthesis partially prevented apoptosis, indicating that these sphingolipids play a key role in the pro-apoptotic effect of cannabinoids in MM cells. Remarkably, blockage of the CB2 receptor also inhibited cannabinoid-induced apoptosis. Cannabinoid derivative WIN-55 enhanced the anti-myeloma activity of dexamethasone and melphalan overcoming resistance to melphalan in vitro. Finally, administration of cannabinoid WIN-55 to plasmacytoma-bearing mice significantly suppressed tumor growth in vivo. Together, our data suggest that cannabinoids may be considered as potential therapeutic agents in the treatment of MM
    corecore