56 research outputs found
ArgoMoon: Italian CubeSat Technology to Record the Maiden Flight of SLS Towards the Moon
The ArgoMoon Nanosatellite, developed by the Italian company Argotec for the Italian Space Agency, will be launched in 2021, during the maiden flight of the NASA Space Launch System (SLS) named Artemis-1 mission. ArgoMoon will be the first microsatellite to be released by the Interim Cryogenic Propulsion Stage (ICPS) and it will acquire significant pictures of ICPS itself. It will perform proximity flight around the secondary stage of the launcher by means of autonomous imaging and tracking subsystems, thus allowing the CubeSat to remain close to the target, in order to capture high resolution pictures with technical and outreach purposes. After this first phase, orbital manoeuvers will move the satellite in a geocentric highly elliptic orbit, whose apogee is high enough to allow flybys and imaging of the Moon and the surrounding environment. This second part of the mission will last six months prior to the CubeSat disposal in a heliocentric orbit. ArgoMoon mission will allow testing the platform in the severe environment of Deep Space, imposing severe propulsive maneuvers and long-distance communications. The technical solutions to meet challenging requirements and mission objectives have been implemented by Argotec in a robust CubeSat platform
LICIACube on DART Mission: An Asteroid Impact Captured by Italian Small Satellite Technology
In the frame of the Planetary Defense program, NASA developed the Double Asteroid Redirection Test (DART) mission and the Italian Space Agency joined the effort. DART’s spacecraft will act as a kinetic impactor by deliberately crashing into the moonlet of Didymos binary system (i.e. Didymos-B) while the effects of the impact will be observed by a small satellite, the Light Italian CubeSat for Imaging of Asteroid (LICIACube) and ground-based telescopes. LICIACube, an Italian Space Agency (ASI) mission, will fly with a relative velocity of approximately 6.5 km/s and it will document the effects of the impact, the crater and the evolution of the plume generated by the collision. LICIACube will have to maintain the asteroid\u27s pointing at an angular speed of approximately 10 deg/s to fly-by the asteroid close to the Didymos-B surface. The images acquired by LICIACube will be processed onboard through the autonomous navigation algorithm to identify the asteroid system and control the satellite attitude. They will also help the scientific community and provide feedback to the Planetary Defense program, pioneered by the Space Agencies. This deep-space mission is based on a small scale but highly technological platform, whose development is involving both the Italian technical and scientific community
Combined Effects of LED Lights and chicken manure on Neochloris oleoabundans Growth
In this study a photobioreactor prototype is presented for the culture growth of microalgae
model organism Neochloris oleoabundans by using chicken manure waste as feedstock
along with the optimum combination of led light wavelengths and light intensity.
Particularly interesting results are observed on the strains fed by chicken manure medium
under the proper combination of red and blue LED light illumination, the microalgal
growth resulted comparable with the strains fed by the costly commercial microalgal
growth medium (BG 11 medium). Cell concentration, optical density, growth rate, cell
size, total lipid and photosynthetic pigment content have been monitored during a
time-course experiment. The data suggest that there are difficulties due to white light
diffusion into the dark chicken medium, which leads to a generally lower intensity
scattered along all wavelengths; blue or combined red and blue lights resulted in a higher
irradiation density, affecting microalgae cell growth
LICIACube Mission: The Fastest Fly-By Ever Done by a CubeSat
As SmallSats are gathering an ever-increasing importance for all types of space missions, they are asked more often to operate in harshest environments and to complete the most complex tasks. One of these demanding technical challenges arises in the frame of the planetary defense. Space missions towards asteroids have garnered the due attention in recent years and, in this regard, NASA has developed the Double Asteroid Redirection Test (DART) mission, in which the Italy will lend its contribution. While DART acts as a kinetic impactor deflecting the orbit of the asteroid Dimorphos, the moon of the targeted binary system Didymos, the Light Italian CubeSat for Imaging of Asteroid (LICIACube) collects and gathers valuable images of the effect of the DART impact on the rocky body. LICIACube will allow to study the structure and evolution of the ejecta plume resulting from the impact, and to model both impacted and non-impacted sides of Dimorphos. LICIACube is an Italian Space Agency (ASI) project, whose design, integration and testing have been assigned to the aerospace company Argotec. The scientific team is enriched by University of Bologna team, supporting the orbit determination and the satellite navigation, Polytechnic of Milan, for mission analysis support and optimization and INAF (National Institute of Astrophysics), which provides support in the scientific operations of the satellite, instrument calibrations and data exploitation. This work focuses on the fly-by of LICIACube which will be accomplished using the imaging capabilities provided by theArgotecHAWK-6 platform and by the autonomous navigation system. In order to acquire high-resolution images, LICIACube approaches Dimorphos at a relative distance of 55km. The very close fly-by, the high relative velocity of ∼7 km/s with respect to the asteroid and the need to keep LICIACube camera pointed at Dimorphos make the mission very challenging. In addition, since the binary asteroid system is ∼10 million kilometers away from Earth, the fly-by has to be performed with no real time commanding. As a result, LICIACube shall be able to autonomously analyze all information from its sensors to track the asteroid. The evaluation and subsequent solutions to this problem are presented in this paper, as well as a unit-level description of the parts included in the autonomous navigation system. Finally, an overview of the verification of both unit-level and system-level strategies is outlined
The Ma_MISS/ExoMars 2020 spectrometer: on ground instrument calibration
The Ma_MISS FM spectrometer for ExoMars 2020 mission to Mars has been successfully calibrated, before integration in the FM Drill. Both spectral and radiometric calibration, together with validation measurements performed on rocks slabs, have demonstrated the capabilities of the instrument
The SSDC Role in the LICIACube Mission: Data Management and the MATISSE Tool
Light Italian Cubesat for Imaging of Asteroids (LICIACube) is an Italian mission managed by the Italian Space
Agency (ASI) and part of the NASA Double Asteroid Redirection Test (DART) planetary defense mission. Its
main goals are to document the effects of the DART impact on Dimorphos, the secondary member of the (65803)
Didymos binary asteroid system, characterizing the shape of the target body and performing dedicated scientific
investigations on it. Within this framework, the mission Science Operations Center will be managed by the Space
Science Data Center (ASI-SSDC), which will have the responsibility of processing, archiving, and disseminating
the data acquired by the two LICIACube onboard cameras. In order to better accomplish this task, SSDC also plans
to use and modify its scientific webtool Multi-purpose Advanced Tool for Instruments for the solar system
Exploration (MATISSE), making it the primary tool for the LICIACube data analysis, thanks to its advanced
capabilities for searching and visualizing data, particularly useful for the irregular shapes common to several small
bodies
VADER: Probing the Dark Side of Dimorphos with LICIACube LUKE
The ASI cubesat LICIACube has been part of the first planetary defense mission DART, having among its scopes to complement the DRACO images to better constrain the Dimorphos shape. LICIACube had two different cameras, LEIA and LUKE, and to accomplish its goal, it exploited the unique possibility of acquiring images of the Dimorphos hemisphere not seen by DART from a vantage point of view, in both time and space. This work is indeed aimed at constraining the tridimensional shape of Dimorphos, starting from both LUKE images of the nonimpacted hemisphere of Dimorphos and the results obtained by DART looking at the impacted hemisphere. To this aim, we developed a semiautomatic Computer Vision algorithm, named VADER, able to identify objects of interest on the basis of physical characteristics, subsequently used as input to retrieve the shape of the ellipse projected in the LUKE images analyzed. Thanks to this shape, we then extracted information about the Dimorphos ellipsoid by applying a series of quantitative geometric considerations. Although the solution space coming from this analysis includes the triaxial ellipsoid found by using DART images, we cannot discard the possibility that Dimorphos has a more elongated shape, more similar to what is expected from previous theories and observations. The result of our work seems therefore to emphasize the unique value of the LICIACube mission and its images, making even clearer the need of having different points of view to accurately define the shape of an asteroid.This work was supported by the Italian Space Agency (ASI) within the LICIACube project (ASI-INAF agreement AC No. 2019-31-HH.0) and by the DART mission, NASA contract 80MSFC20D0004
The DREAMS experiment flown on the ExoMars 2016 mission for the study of Martian environment during the dust storm season
The DREAMS (Dust characterization, Risk assessment and Environment Analyser on the Martian Surface) instrument on Schiaparelli lander of ExoMars 2016 mission was an autonomous meteorological station designed to completely characterize the Martian atmosphere on surface, acquiring data not only on temperature, pressure, humidity, wind speed and its direction, but also on solar irradiance, dust opacity and atmospheric electrification; this comprehensive set of parameters would assist the quantification of risks and hazards for future manned exploration missions mainly related to the presence of airborne dust. Schiaparelli landing on Mars was in fact scheduled during the foreseen dust storm season (October 2016 in Meridiani Planum) allowing DREAMS to directly measure the characteristics of such extremely harsh environment. DREAMS instrument’s architecture was based on a modular design developing custom boards for analog and digital channel conditioning, power distribution, on board data handling and communication with the lander. The boards, connected through a common backbone, were hosted in a central electronic unit assembly and connected to the external sensors with dedicated harness. Designed with very limited mass and an optimized energy consumption, DREAMS was successfully tested to operate autonomously, relying on its own power supply, for at least two Martian days (sols) after landing on the planet. A total of three flight models were fully qualified before launch through an extensive test campaign comprising electrical and functional testing, EMC verification and mechanical and thermal vacuum cycling; furthermore following the requirements for planetary protection, contamination control activities and assay sampling were conducted before model delivery for final integration on spacecraft. During the six months cruise to Mars following the successful launch of ExoMars on 14th March 2016, periodic check outs were conducted to verify instrument health check and update mission timelines for operation. Elaboration of housekeeping data showed that the behaviour of the whole instrument was nominal during the whole cruise. Unfortunately DREAMS was not able to operate on the surface of Mars, due to the known guidance anomaly during the descent that caused Schiaparelli to crash at landing. The adverse sequence of events at 4 km altitude anyway triggered the transition of the lander in surface operative mode, commanding switch on the DREAMS instrument, which was therefore able to correctly power on and send back housekeeping data. This proved the nominal performance of all DREAMS hardware before touchdown demonstrating the highest TRL of the unit for future missions. The spare models of DREAMS are currently in use at university premises for the development of autonomous units to be used in cubesat mission and in probes for stratospheric balloons launches in collaboration with Italian Space Agency
The Dimorphos ejecta plume properties revealed by LICIACube
The Double Asteroid Redirection Test (DART) had an impact with Dimorphos (a satellite of the asteroid Didymos) on 26 September 20221. Ground-based observations showed that the Didymos system brightened by a factor of 8.3 after the impact because of ejecta, returning to the pre-impact brightness 23.7 days afterwards2. Hubble Space Telescope observations made from 15 minutes after impact to 18.5 days after, with a spatial resolution of 2.1 kilometres per pixel, showed a complex evolution of the ejecta3, consistent with other asteroid impact events. The momentum enhancement factor, determined using the measured binary period change4, ranges between 2.2 and 4.9, depending on the assumptions about the mass and density of Dimorphos5. Here we report observations from the LUKE and LEIA instruments on the LICIACube cube satellite, which was deployed 15 days in advance of the impact of DART. Data were taken from 71 seconds before the impact until 320 seconds afterwards. The ejecta plume was a cone with an aperture angle of 140 ± 4 degrees. The inner region of the plume was blue, becoming redder with increasing distance from Dimorphos. The ejecta plume exhibited a complex and inhomogeneous structure, characterized by filaments, dust grains and single or clustered boulders. The ejecta velocities ranged from a few tens of metres per second to about 500 metres per second.This work was supported by the Italian Space Agency (ASI) in the LICIACube project (ASI-INAF agreement AC no. 2019-31-HH.0) and by the DART mission, NASA contract 80MSFC20D0004. M.Z. acknowledges Caltech and the Jet Propulsion Laboratory for granting the University of Bologna a licence to an executable version of MONTE Project Edition software. M.Z. is grateful to D. Lubey, M. Smith, D. Mages, C. Hollenberg and S. Bhaskaran of NASA/JPL for the discussions and suggestions regarding the operational navigation of LICIACube. G.P. acknowledges financial support from the Centre national d’études spatiales (CNES, France). A.C.B. acknowledges funding by the NEO-MAPP project (grant agreement 870377, EC H2020-SPACE-2019) and by the Ministerio de Ciencia Innovación (PGC 2018) RTI2018-099464-B-I00. F.F. acknowledges funding from the Swiss National Science Foundation (SNSF) Ambizione (grant no. 193346). J.-Y.L. acknowledges the support from the NASA DART Participating Scientist Program (grant no. 80NSSC21K1131). S.D.R. and M.J. acknowledge support from the Swiss National Science Foundation (project no. 200021_207359)
Exploring the Martian Subsurface with Ma_MISS EXOMARS 2022
International audienc
- …