247 research outputs found

    Damage tolerance analysis of aircraft reinforced panels

    Get PDF
    This work is aimed at reproducing numerically a campaign of experimental tests performed for the development of reinforced panels, typically found in aircraft fuselage. The bonded reinforcements can significantly reduce the rate of fatigue crack growth and increase the residual strength of the skin. The reinforcements are of two types: stringers and doublers. The former provides stiffening to the panel while the latter controls the crack growth between the stringers. The purpose of the study is to validate a numerical method of analysis that can predict the damage tolerance of these reinforced panels. Therefore, using a fracture mechanics approach, several models (different by the geometry and the types of reinforcement constraints) were simulated with the finite element solver ABAQUS. The bonding between skin and stiffener was taken either rigid or flexible due to the presence of adhesive. The possible rupture of the reinforcements was also considered. The stress intensity factor trend obtained numerically as a function of crack growth was used to determine the fatigue crack growth rate, obtaining a good approximation of the experimental crack propagation rate in the skin. Therefore, different solutions for improving the damage tolerance of aircraft reinforced panels can be virtually tested in this way before performing experiments

    Microstructure-based RVE modeling of the failure behavior and LCF resistance of ductile cast iron

    Get PDF
    In this work the failure behavior of ductile cast iron microstructure subjected to tensile and low-cycle fatigue loadings is simulated by a 3-D, FE Reference Volume Element approach. A fully ferritic matrix is considered as representative of the low-hardness, high-ductility material class of nodular cast irons. Plastic flow potential rule, ductile and low cycle fatigue damage models are implemented at the micro-scale for the matrix constituent in conjunction with nonlinear cyclic hardening laws, and periodic boundary conditions are imposed over the RVE at the meso-scale. Different values of triaxiality are imposed. Numerical results confirm experimental findings of the behavior at the meso-scale and correctly predict the LCF lifetime, driving the interpretation of inner strain distribution, voids interaction and triaxiality effects on failure mechanisms

    Conceptual study and manufacturing of a configurable and weld-free lattice base for automatic food machines

    Get PDF
    The study is aimed at developing a modular lattice base for automatic food machines, starting with a solution already patented by some of the authors. In this case, welded carpentry modules were interlocked with a system of profiles and metal inserts, also in welded carpentry, and the union was stabilized by structural adhesive bonding. Since welding involves long processing times and thermal distortions to be restored later, the driver of this study is to limit the use of welding as much as possible while increasing the modularity of the construction. For this purpose, various solution concepts have been generated where a common feature is the presence of rods of the same geometry and section to be joined together in configurable structural nodes. The concepts are qualitatively evaluated in light of the requirements, and the selected concept is digitally and physically prototyped. The prototype has been in service from over 5 years without showing any problems whatsoever

    analysis of bistable composite laminate with embedded sma actuators

    Get PDF
    Abstract The present work is aimed at the development of a finite element model of a composite laminate, to evaluate the possibility to snap between equilibrium configurations by means of shape memory alloy (SMA) wires. The underlying idea is to potentially take advantage of structures which possess multiple equilibrium configurations that can be achieved with a small energy input. Therefore, unsymmetric composite laminates that exhibit bistable response to actuation force are considered. Embedded SMA wires will provide the actuation force by virtue of Shape-Memory Effect i.e. restoring the original shape of a plastically deformed SMA wire by heating it. The Shape-Memory Effect is modelled in a simplified way using the Effective Coefficient of Thermal Expansion concept

    modeling the influence of stress triaxiality on the failure strain of nodular cast iron microstructures

    Get PDF
    Abstract In this study the fracture behavior of different cast iron microstructures subjected to tensile loading under different triaxialities is simulated by a finite element, 3-D Reference Volume Element approach. Three ferritic/pearlitic heterogeneous matrixes are considered which are representative of the class material grades for strength and ductility. Isotropic ductile and shear damage models are considered for the matrix constituents as concurrent damage mechanisms at the microscale, while graphite nodules are considered as voids acting as stress concentrators. Numerical results confirm experimental findings about local strain distribution and damage accumulation, and reproduce the engineering macroscopic behavior. The stress triaxiality is found to play a strong effect on the failure strain, extending the potentialities of this RVE modeling approach

    Analisi basata sugli sforzi locali della resistenza a fatica di giunzioni incollate di materiali compositi

    Get PDF
    Il lavoro prende spunto dai risultati di un’analisi sperimentale del comportamento a fatica di giunzioni incollate di materiali compositi laminati di elevato spessore formati da strati di unidirezionale e di tessuto di fibra di carbonio. I giunti sono stati realizzati in modo tale da saggiare l’influenza della lunghezza di sovrapposizione (da 25,4 mm a 110,8 mm), della forma del giunto (con e senza rastremazione), e della composizione degli aderendi (sostituzione di uno degli aderendi in composito con uno in acciaio). Mediante analisi 2D elastiche con il metodo degli elementi finiti sono state ricavate le distribuzioni degli sforzi all’interno dello strato di adesivo, al fine di individuare un parametro utile alla descrizione del comportamento a fatica in termini di sforzi locali - numero di cicli a rottura. Il ruolo della fase di propagazione viene discusso alla luce di osservazioni dell’avanzamento della frattura, condotta su alcuni dei giunti testati

    Comparison of tensile strength and fracture toughness of co-bonded and cold-bonded carbon fiber laminate-aluminum adhesive joints

    Get PDF
    The purpose of this work is to compare the co-bonding vs. cold-bonding route on the adhesive joint performance of a CFRP (Carbon Fiber Reinforced Polymer) laminate–aluminum connection. In particular, the overlap shear, tensile strength and Mode I and Mode II fracture toughness will be evaluated. The adhesives for co-bonding and cold-bonding are, respectively, a thermosetting modified epoxy, unsupported structural film and a two-component epoxy adhesive, chosen as representative of applications in the high-performance/race car field. The emerging trend is that, in tensile e Mode I fracture tests, the failure path is predominantly in the composite. Mode II fracture tests instead resulted in a cohesive fracture, meaning that, under pure shear loading, the weakest link may not be the composite. The lap-shear tests are placed midway (cohesive failure for co-bonding and composite delamination for cold-bonding, respectively), probably due to the different peel stress values related to the different adhesive Young’s modulus. The exploitation of the full capacity of the adhesive joint, hence the possibility of highlighting better, different performances of co-bonding vs. cold-bonding, would require consistent improvement of the out-of-plane strength of the CFRP laminate and/or to someway redistribute the peel stress on the bondline

    Engineering design in food-packaging industry: The case study of a tuna canning machine

    Get PDF
    Food packaging industry requires machines able to perform different tasks and carry out several functions. Machine modularization allows to feed customer's needs creating a set of equipment with different features and technology. Module derivation is particularly important at the conceptual phase where main decisions are taken and where the degree of freedom are higher, avoiding subsequent costly modification. This study aims at investigating the adoption of engineering design process for the development of a tuna canning machine, deriving main modules for a definition of a product platform. The possibility to have a modular framework in this type of products allows to satisfy constraints coming from different markets and applications (i.e., product quality, adaptability, upgradability, assemblability, compliance with standards where the machine is installed, etc.). Modules were derived based on state-of-art approaches used for product development (i.e., functional analysis, module derivation and morphological matrix) and two examples (i.e., Cutter and Compactor & Shaper modules) were detailed to explain the developed design solutions. Results highlight how different design options can be adopted to overcome several issues (i.e., assemblability, upgradability) and fulfill requirements of different markets (i.e., product quality and aesthetic)
    • …
    corecore