44 research outputs found

    Intratumoral injection of TLR9 agonist promotes an immunopermissive microenvironment transition and causes cooperative antitumor activity in combination with anti-PD1 in pancreatic cancer

    Get PDF
    Background: Complex tumor and immune microenvironment render pancreatic ductal adenocarcinoma (PDAC) resistant to immune checkpoint inhibitors (ICIs). Therefore, a strategy to convert the immune hostile into an immunopermissive tumor is required. Recent studies showed that intratumoral injection of Toll-like receptor 9 agonist IMO-2125 primes the adaptive immune response. Phase I and II trials with intratumoral IMO-2125 demonstrated its safety and antitumoral activity. Methods: We generated an array of preclinical models by orthotopically engrafting PDAC-derived cell lines in syngeneic mice and categorized them as high, low and no immunogenic potential, based on the ability of tumor to evoke T lymphocyte or NK cell response. To test the antitumor efficacy of IMO-2125 on locally treated and distant sites, we engrafted cancer cells on both flanks of syngeneic mice and treated them with intratumoral IMO-2125 or vehicle, alone or in combination with anti-PD1 ICI. Tumor tissues and systemic immunity were analyzed by transcriptomic, cytofluorimetric and immunohistochemistry analysis. Results: We demonstrated that intratumoral IMO-2125 as single agent triggers immune system response to kill local and distant tumors in a selected high immunogenic subtype affecting tumor growth and mice survival. Remarkably, intratumoral IMO-2125 in combination with systemic anti-PD1 causes a potent antitumor effect on primary injected and distant sites also in pancreatic cancer models with low immunogenic potential, preceded by a transition toward an immunopermissive microenvironment, with increase in tumor-infiltrating dendritic and T cells in tumor and lymph nodes. Conclusion: We demonstrated a potent antitumor activity of IMO-2125 and anti-PD1 combination in immunotherapy-resistant PDAC models through the modulation of immune microenvironment, providing the rationale to translate this strategy into a clinical setting

    The Renaissance of KRAS Targeting in Advanced Non-Small-Cell Lung Cancer: New Opportunities Following Old Failures

    Get PDF
    : Non-small cell lung cancer (NSCLC) represents the perfect paradigm of 'precision medicine' due to its complex intratumoral heterogeneity. It is truly characterized by a range of molecular alterations that can deeply influence the natural history of this disease. Several molecular alterations have been found over time, paving the road to biomarker-driven therapy and radically changing the prognosis of 'oncogene addicted' NSCLC patients. Kirsten rat sarcoma (KRAS) mutations are present in up to 30% of NSCLC (especially in adenocarcinoma histotype) and have been identified decades ago. Since its discovery, its molecular characteristics and its marked affinity to a specific substrate have led to define KRAS as an undruggable alteration. Despite that, many attempts have been made to develop drugs capable of targeting KRAS signaling but, until a few years ago, these efforts have been unsuccessful. Comprehensive genomic profiling and wide-spectrum analysis of genetic alterations have only recently allowed to identify different types of KRAS mutations. This tricky step has finally opened new frontiers in the treatment approach of KRAS-mutant patients and might hopefully increase their prognosis and quality of life. In this review, we aim to highlight the most interesting aspects of (epi)genetic KRAS features, hoping to light the way to the state of art of targeting KRAS in NSCLC

    Immunoevolution of mouse pancreatic organoid isografts from preinvasive to metastatic disease

    Get PDF
    Pancreatic ductal adenocarcinoma (PDA) has a highly immunosuppressive microenvironment, which is contributed by the complex interaction between cancer cells and a heterogeneous population of stromal cells. Therefore, facile and trackable models are needed for integrative and dynamic interrogation of cancer-stroma interaction. Here, we tracked the immunoevolution of PDA in a genetically-defined transplantable model of mouse pancreatic tumour organoids that recapitulates the progression of the disease from early preinvasive lesions to metastatic carcinomas. We demonstrated that organoid-derived isografts (ODI) can be used as a biological source of biomarkers (NT5E, TGFB1, FN1, and ITGA5) of aggressive molecular subtypes of human PDA. In ODI, infiltration from leukocytes is an early event during progression of the disease as observed for autochthonous models. Neoplastic progression was associated to accumulation of Maf+ macrophages, which inversely correlated with CD8+ T cells infiltration. Consistently, levels of MAF were enriched in human PDA subtypes characterized by abundance of macrophage-related transcripts and indicated poor patients' survival. Density of MAF+ macrophages was higher in human PDA tissues compared to preinvasive lesions. Our results suggest that ODIs represent a suitable system for genotypic-immunophenotypic studies and support the hypothesis of MAF+ macrophages as a prominent immunosuppressive population in PDA

    PTEN Loss as a Predictor of Tumor Heterogeneity and Poor Prognosis in Patients With EGFR-mutant Advanced Non-small-cell Lung Cancer Receiving Tyrosine Kinase Inhibitors

    Get PDF
    Background: Rapid disease progression of patients with advanced epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancer (NSCLC) has been recently associated with tumor heterogeneity, which may be mirrored by coexisting concomitant alterations. The aim of this analysis was to investigate the correlation between loss of function of PTEN and the efficacy of tyrosine kinase inhibitors in this population. Materials and Methods: Archival tumor blocks from patients with EGFR-mutant NSCLC who were administered upfront tyrosine kinase inhibitors were retrospectively collected. The status of 4 genes (PTEN, TP53, c-MET, IGFR) was evaluated by immunohistochemistry, and it was correlated with overall response rate, overall survival (OS), and progression-free survival (PFS). Results: Fifty-one patients were included. In multivariate analysis, PTEN loss (hazard ratio [HR], 3.46; 95% confidence interval [CI], 1.56-7.66; P = .002), IGFR overexpression (HR, 2.22; 95% CI, 1.03-4.77; P = .04), liver metastases (HR, 3.55; 95% CI, 1.46-8.65; P = .005), and Eastern Cooperative Oncology Group performance status (ECOG PS) > 1 (HR, 2.57; 95% CI, 1.04-6.34; P = .04) were significantly associated with shorter PFS. Patients with PTEN loss had a median PFS of 6 months (2-year PFS, 11.6%), whereas patients without PTEN loss had a median PFS of 18 months (2-year PFS, 43.6%) (log-rank P < .005). In the multivariate analysis, PTEN loss (HR, 5.92; 95% CI, 2.37-14.81; P < .005), liver metastases (HR, 2.63; 95% CI, 1.06-6.51; P = .037), and ECOG PS > 1 (HR, 2.80; 95% CI, 1.15-6.81; P = .024) were significantly associated with shorter OS. Patients with PTEN loss had a median OS of 6 months (2-year OS, 12.2%), whereas in patients without PTEN loss, OS was not reached (2-year OS, 63.9%) (log-rank P < .0005).Conclusions: A low-cost and reproducible immunohistochemistry assay for PTEN loss analysis represents a potential tool for identifying tumor heterogeneity in patients with advanced EGFR-mutant NSCLC

    Generation and in vivo validation of an IL-12 fusion protein based on a novel anti-human FAP monoclonal antibody

    Full text link
    BACKGROUND In this study, we describe the generation of a fully human monoclonal antibody (named '7NP2') targeting human fibroblast activation protein (FAP), an antigen expressed in the microenvironment of different types of solid neoplasms. METHODS 7NP2 was isolated from a synthetic antibody phage display library and was improved by one round of mutagenesis-based affinity maturation. The tumor recognition properties of the antibody were validated by immunofluorescence procedures performed on cancer biopsies from human patients. A fusion protein consisting of the 7NP2 antibody linked to interleukin (IL)-12 was generated and the anticancer activity of the murine surrogate product (named mIL12-7NP2) was evaluated in mouse models. Furthermore, the safety of the fully human product (named IL12-7NP2) was evaluated in Cynomolgus monkeys. RESULTS Biodistribution analysis in tumor-bearing mice confirmed the ability of the product to selectively localize to solid tumors while sparing healthy organs. Encouraged by these results, therapy studies were conducted in vivo, showing a potent antitumor activity in immunocompetent and immunodeficient mouse models of cancer, both as single agent and in combination with immune checkpoint inhibitors. The fully human product was tolerated when administered to non-human primates. CONCLUSIONS The results obtained in this work provided a rationale for future clinical translation activities using IL12-7NP2

    Immunosuppression by monocytic myeloid-derived suppressor cells in patients with pancreatic ductal carcinoma is orchestrated by STAT3

    Get PDF
    Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly devastating disease with an overall 5-year survival rate of less than 8%. New evidence indicates that PDAC cells release pro-inflammatory metabolites that induce a marked alteration of normal hematopoiesis, favoring the expansion and accumulation of myeloid-derived suppressor cells (MDSCs). We report here that PDAC patients show increased levels of both circulating and tumor-infiltrating MDSC-like cells. Methods: The frequency of MDSC subsets in the peripheral blood was determined by flow cytometry in three independent cohorts of PDAC patients (total analyzed patients, n = 117). Frequency of circulating MDSCs was correlated with overall survival of PDAC patients. We also analyzed the frequency of tumor-infiltrating MDSC and the immune landscape in fresh biopsies. Purified myeloid cell subsets were tested in vitro for their T-cell suppressive capacity. Results: Correlation with clinical data revealed that MDSC frequency was significantly associated with a shorter patients' overall survival and metastatic disease. However, the immunosuppressive activity of purified MDSCs was detectable only in some patients and mainly limited to the monocytic subset. A transcriptome analysis of the immunosuppressive M-MDSCs highlighted a distinct gene signature in which STAT3 was crucial for monocyte re-programming. Suppressive M-MDSCs can be characterized as circulating STAT3/arginase1-expressing CD14+ cells. Conclusion: MDSC analysis aids in defining the immune landscape of PDAC patients for a more appropriate diagnosis, stratification and treatment

    Induction of immunosuppressive functions and NF-\u3baB by FLIP in monocytes

    Get PDF
    Immunosuppression is a hallmark of tumor progression, and treatments that inhibit or deplete monocytic myeloid-derived suppressive cells could promote anti-tumor immunity. c-FLIP is a central regulator of caspase-8-mediated apoptosis and necroptosis. Here we show that low-dose cytotoxic chemotherapy agents cause apoptosis linked to c-FLIP down-regulation selectively in monocytes. Enforced expression of c-FLIP or viral FLIP rescues monocytes from cytotoxicity and concurrently induces potent immunosuppressive activity, in T cell cultures and in vivo models of tumor progression and immunotherapy. FLIP-transduced human blood monocytes can suppress graft versus host disease. Neither expression of FLIP in granulocytes nor expression of other anti-apoptotic genes in monocytes conferred immunosuppression, suggesting that FLIP effects on immunosuppression are specific to monocytic lineage and distinct from death inhibition. Mechanistically, FLIP controls a broad transcriptional program, partially by NF-\u3baB activation. Therefore, modulation of FLIP in monocytes offers a means to elicit or block immunosuppressive myeloid cells

    Translational Research in the Era of Precision Medicine: Where We Are and Where We Will Go

    Get PDF
    The advent of Precision Medicine has globally revolutionized the approach of translational research suggesting a patient-centric vision with therapeutic choices driven by the identification of specific predictive biomarkers of response to avoid ineffective therapies and reduce adverse effects. The spread of "multi-omics" analysis and the use of sensors, together with the ability to acquire clinical, behavioral, and environmental information on a large scale, will allow the digitization of the state of health or disease of each person, and the creation of a global health management system capable of generating real-time knowledge and new opportunities for prevention and therapy in the individual person (high-definition medicine). Real world data-based translational applications represent a promising alternative to the traditional evidence-based medicine (EBM) approaches that are based on the use of randomized clinical trials to test the selected hypothesis. Multi-modality data integration is necessary for example in precision oncology where an Avatar interface allows several simulations in order to define the best therapeutic scheme for each cancer patient

    Mechanisms of resistance to chemotherapeutic and anti-angiogenic drugs as novel targets for pancreatic cancer therapy

    Get PDF
    Pancreatic cancer remains one of the most lethal and poorly understood human malignancies and will continue to be a major unsolved health problem in the 21(st) century. Despite efforts over the past three decades to improve diagnosis and treatment, the prognosis for patients with pancreatic cancer is extremely poor with or without treatment, and incidence rates are virtually identical to mortality rates. Although advances have been made through the identification of relevant molecular pathways in pancreatic cancer, there is still a critical, unmet need for the translation of these findings into effective therapeutic strategies that could reduce the intrinsic drug resistance of this disease and for the integration of these molecularly targeted agents into established combination chemotherapy and radiotherapy regimens in order to improve patients' survival. Tumors are heterogeneous cellular entities whose growth and progression depend on reciprocal interactions between genetically altered neoplastic cells and a non-neoplastic microenvironment. To date, most of the mechanisms of resistance studied have been related to tumor cell-autonomous signaling pathways. However, recent data suggest a putative important role of tumor microenvironment in the development and maintenance of resistance to classic chemotherapeutic and targeted therapies. This present review is meant to describe and discuss some of the most important advances in the comprehension of the tumor cell-autonomous and tumor microenvironment-related molecular mechanisms responsible for the resistance of pancreatic cancer to the proapoptotic activity of the classic chemotherapeutic agents and to the most novel anti-angiogenic drugs. We present some of the emerging therapeutic targets for the modulation of this resistant phenotype

    Predictive biomarkers for the treatment of resectable esophageal and esophago-gastric junction adenocarcinoma: from hypothesis generation to clinical validation

    No full text
    Introduction Esophageal and esophago-gastric junction (EGJ) adenocarcinomas remain a major health problem worldwide with a worryingly increasing incidence. Recent trials indicate survivals benefit for preoperative or perioperative chemoradiotherapy compared to surgery alone. Beside standard chemoradiotherapy regimens, new therapeutic approaches with targeted therapies have been proposed for the treatment of resectable disease. However, clinical outcomes remain extremely poor due to drug resistance phenomena. The failure of these approaches could be partially ascribed to their incorrect application in patients. Therefore, the identification of strong biomarkers for optimal patient management is urgently needed. Areas covered This review aims to summarize and critically discuss the most relevant findings regarding predictive biomarker development for neoadjuvant treatment of resectable esophageal and esophago-gastric junction adenocarcinoma patients. Expert commentary Optimizing the currently available therapeutic modalities through a more accurate selection of patients may avoid the use of ineffective and potentially toxic treatments. During the last decade, the advent of high-throughput "-omics" technologies has set the basis for a new biomarker discovery approach from "molecule by molecule" screening towards a large-scale systematic screening process with exponential increases in putative biomarkers, which often failed to provide adequate clinical validation
    corecore