2,093 research outputs found

    On the anomalous X-ray afterglows of GRB 970508 and GRB 970828

    Get PDF
    Recently, BeppoSAX and ASCA have reported an unusual resurgence of soft X-ray emission during the afterglows of GRB 970508 and GRB 970828, together with marginal evidence for the existence of Fe-lines in both objects. We consider the implications of the existence of a torus of iron-rich material surrounding the sites of gamma ray bursts as would be expected in the SupraNova model; in particular, we show that the fireball will quickly hit this torus, and bring it to a temperature ~3x10^7 K. Bremsstrahlung emission from the heated up torus will cause a resurgence of the soft X-ray emission with all expected characteristics (flux level, duration and spectral hardening with time) identical to those observed during the reburst. Also, thermal emission from the torus will account for the observed iron line flux. These events are also observable, for instance by new missions such as SWIFT, when beaming away from our line sight makes us miss the main burst, as Fast (soft) X-ray Transients, with durations ~10^3 s, and fluences ~10^-7-10^-4 erg cm^-2. This model provides evidence in favor of the SupraNova model for Gamma Ray Bursts.Comment: To appear in MN Pink pages, MN-LateX, no figure

    Synchronization of Chaotic Systems by Common Random Forcing

    Full text link
    We show two examples of noise--induced synchronization. We study a 1-d map and the Lorenz systems, both in the chaotic region. For each system we give numerical evidence that the addition of a (common) random noise, of large enough intensity, to different trajectories which start from different initial conditions, leads eventually to the perfect synchronization of the trajectories. The largest Lyapunov exponent becomes negative due to the presence of the noise terms.Comment: 5 pages, uses aipproc.cls and aipproc.sty (included). Five double figures are provided as ten separate gif files. Version with (large) postscript figures included available from http://www.imedea.uib.es/PhysDept/publicationsDB/date.htm

    The Turbulent Story of X-ray Bursts: Effects of Shear Mixing on Accreting Neutron Stars

    Full text link
    During accretion, a neutron star (NS) is spun up as angular momentum is transported through its liquid surface layers. We study the resulting differentially rotating profile, focusing on the impact this has for type I X-ray bursts. The viscous heating is found to be negligible, but turbulent mixing can be activated. Mixing has the greatest impact when the buoyancy at the compositional discontinuity between accreted matter and ashes is overcome. This occurs preferentially at high accretion rates or low spin frequencies and may depend on the ash composition from the previous burst. We then find two new regimes of burning. The first is ignition in a layer containing a mixture of heavier elements with recurrence times as short as ~5-30 minutes, similar to short recurrence time bursts. When mixing is sufficiently strong, a second regime is found where accreted helium mixes deep enough to burn stably, quenching X-ray bursts altogether. The carbon-rich material produced by stable helium burning would be important for triggering and fueling superbursts.Comment: 3 pages, 3 figures. To appear in the proceedings of "Forty Years of Pulsars: Millisecond Pulsars, Magnetars and More" held in Montreal, Canada, August 12-17, 200

    Tetraphosphabenzenes Obtained via a Triphosphacyclobutadiene Intermediate

    Get PDF
    An acyl triphosphirene ligand transfers an O atom to Nb to liberate the putative triphosphacyclobutadiene intermediate [RCP3{W(CO)5}2], which engages in [2+4]-cycloaddition reactions with an organic diene and a phosphaalkyne (see scheme; P orange, O red, W violet, C white). The latter reaction yields the Dewar isomer of a tetraphosphabenzene, which can be converted to a tetraphosphabenzvalene containing a Z-diphosphene.National Science Foundation (U.S.) (grant CHE-719157

    Microcephaly and macrocephaly. A study on anthropometric and clinical data from 308 subjects

    Get PDF
    Head circumference is the auxological parameter that most correlates with developmental anomalies in childhood. Head circumference (HC) two standard deviations (SD) below or above the mean defines microcephaly and macrocephaly, respectively. The aim of this retrospective study was to explore anthropometric parameters and clinical characteristics among subjects with abnormalities in HC who had been referred for developmental assessment. One hundred and sixty four subjects with microcephaly and 144 subjects with macrocephaly were enrolled from birth to 18 months of age. Head circumference at birth and the association with variables related to maternal health status, gestational age, growth pattern, brain imaging and clinical characteristics were analyzed. In some cases, an etiological diagnosis was made. In the two considered conditions, we found different anthropometric and clinical associations, some of which were statistically significant, with implications for ongoing neurodevelopmental surveillance

    Runaway electrification of friable self-replicating granular matter

    Get PDF
    We establish that the nonlinear dynamics of collisions between particles favors the charging of a insulating, friable, self-replicating granular material that undergoes nucleation, growth, and fission processes; we demonstrate with a minimal dynamical model that secondary nucleation produces a positive feedback in an electrification mechanism that leads to runaway charging. We discuss ice as an example of such a self-replicating granular material: We confirm with laboratory experiments in which we grow ice from the vapor phase in situ within an environmental scanning electron microscope that charging causes fast-growing and easily breakable palm-like structures to form, which when broken off may form secondary nuclei. We propose that thunderstorms, both terrestrial and on other planets, and lightning in the solar nebula are instances of such runaway charging arising from this nonlinear dynamics in self-replicating granular matter

    Contamination detection and microbiome exploration with GRIMER

    Get PDF
    Background: Contamination detection is a important step that should be carefully considered in early stages when designing and performing microbiome studies to avoid biased outcomes. Detecting and removing true contaminants is challenging, especially in low-biomass samples or in studies lacking proper controls. Interactive visualizations and analysis platforms are crucial to better guide this step, to help to identify and detect noisy patterns that could potentially be contamination. Additionally, external evidence, like aggregation of several contamination detection methods and the use of common contaminants reported in the literature, could help to discover and mitigate contamination. Results: We propose GRIMER, a tool that performs automated analyses and generates a portable and interactive dashboard integrating annotation, taxonomy, and metadata. It unifies several sources of evidence to help detect contamination. GRIMER is independent of quantification methods and directly analyzes contingency tables to create an interactive and offline report. Reports can be created in seconds and are accessible for nonspecialists, providing an intuitive set of charts to explore data distribution among observations and samples and its connections with external sources. Further, we compiled and used an extensive list of possible external contaminant taxa and common contaminants with 210 genera and 627 species reported in 22 published articles. Conclusion: GRIMER enables visual data exploration and analysis, supporting contamination detection in microbiome studies. The tool and data presented are open source and available at https://gitlab.com/dacs-hpi/grimer

    The performance of the EU-Rotate_N model in predicting the growth and nitrogen uptake of rotations of field vegetable crops in a Mediterranean environment

    Get PDF
    The EU-Rotate_N model was developed as a tool to estimate the growth and nitrogen (N) uptake of vegetable crop rotations across a wide range of European climatic conditions and to assess the economic and environmental consequences of alternative management strategies. The model has been evaluated under field conditions in Germany and Norway and under greenhouse conditions in China. The present work evaluated the model using Italian data to evaluate its performance in a warm and dry environment. Data were collected from four 2-year field rotations, which included lettuce (Lactuca sativa L.), fennel (Foeniculum vulgare Mill.), spinach (Spinacia oleracea L.), broccoli (Brassica oleracea L. var. italica Plenck) and white cabbage (B. oleracea convar. capitata var. alba L.); each rotation used three different rates of N fertilizer (average recommended N1, assumed farmer's practice N2=N1+0·3×N1 and a zero control N0). Although the model was not calibrated prior to running the simulations, results for above-ground dry matter biomass, crop residue biomass, crop N concentration and crop N uptake were promising. However, soil mineral N predictions to 0·6 m depth were poor. The main problem with the prediction of the test variables was the poor ability to capture N mineralization in some autumn periods and an inappropriate parameterization of fennel. In conclusion, the model performed well, giving results comparable with other bio-physical process simulation models, but for more complex crop rotations. The model has the potential for application in Mediterranean environments for field vegetable production
    • 

    corecore