29 research outputs found

    Catalytic C(sp3)-H bond activation in tertiary alkylamines.

    Get PDF
    The development of robust catalytic methods to assemble tertiary alkylamines provides a continual challenge to chemical synthesis. In this regard, transformation of a traditionally unreactive C-H bond, proximal to the nitrogen atom, into a versatile chemical entity would be a powerful strategy for introducing functional complexity to tertiary alkylamines. A practical and selective metal-catalysed C(sp3)-H activation facilitated by the tertiary alkylamine functionality, however, remains an unsolved problem. Here, we report a Pd(II)-catalysed protocol that appends arene feedstocks to tertiary alkylamines via C(sp3)-H functionalization. A simple ligand for Pd(II) orchestrates the C-H activation step in favour of deleterious pathways. The reaction can use both simple and complex starting materials to produce a range of multifaceted γ-aryl tertiary alkylamines and can be rendered enantioselective. The enabling features of this transformation should be attractive to practitioners of synthetic and medicinal chemistry as well as in other areas that use biologically active alkylamines

    Interaction of Isophorone with Pd(111): A Combination of Infrared Reflection-Absorption Spectroscopy, Near-Edge X-ray Absorption Fine Structure, and Density Functional Theory Studies

    Get PDF
    Atomistic level understanding of interaction of alpha,beta-unsaturated carbonyls with late transition metals is a key prerequisite for rational design of new catalytic materials with the desired selectivity toward C-C or C-O bond hydrogenation. The interaction of this class of compounds with transition metals was investigated on alpha,beta-unsaturated ketone isophorone on Pd(111) as a prototypical system. In this study, infrared reflectionabsorption spectroscopy (IRAS), near-edge X-ray absorption fine structure (NEXAFS) experiments and density functional theory calculations including van der Waals interactions (DFT+vdW) were combined to obtain detailed information on the binding of isophorone to palladium at different coverages and on the effect of preadsorbed hydrogen on the binding and adsorption geometry. According to these experimental observations and the results of theoretical calculations, isophorone adsorbs on Pd(111) in a flat-lying geometry at low coverages. With increasing coverage, both C-C and C-O bonds of isophorone tilt with respect to the surface plane. The tilting is considerably more pronounced for the C-C bond on the pristine Pd(111) surface, indicating a prominent perturbation and structural distortion of the conjugated p system upon interaction with Pd. Preadsorbed hydrogen leads to higher tilting angles of both p bonds, which points to much weaker interaction of isophorone with hydrogen-precovered Pd and suggests the conservation of the in-plane geometry of the conjugated pi system. The results of the DFT+vdW calculations provide further insights into the perturbation of the molecular structure of isophorone on Pd(111)
    corecore