519 research outputs found
The Interplay of Lipids, Lipoproteins, and Immunity in Atherosclerosis
Purpose of Review: Atherosclerosis is an inflammatory disorder of the arterial wall, in which several players contribute to the onset and progression of the disease. Besides the well-established role of lipids, specifically cholesterol, and immune cell activation, new insights on the molecular mechanisms underlying the atherogenic process have emerged. Recent Findings: Meta-inflammation, a condition of low-grade immune response caused by metabolic dysregulation, immunological memory of innate immune cells (referred to as “trained immunity”), cholesterol homeostasis in dendritic cells, and immunometabolism, i.e., the interplay between immunological and metabolic processes, have all emerged as new actors during atherogenesis. These observations reinforced the interest in directly targeting inflammation to reduce cardiovascular disease. Summary: The novel acquisitions in pathophysiology of atherosclerosis reinforce the tight link between lipids, inflammation, and immune response, and support the benefit of targeting LDL-C as well as inflammation to decrease the CVD burden. How this will translate into the clinic will depend on the balance between costs (monoclonal antibodies either to PCSK9 or to IL-1ß), side effects (increased incidence of death due to infections for anti-IL-1ß antibody), and the benefits for patients at high CVD risk
HDL in Immune-Inflammatory Responses: Implications beyond Cardiovascular Diseases
High density lipoproteins (HDL) are heterogeneous particles composed by a vast array of proteins and lipids, mostly recognized for their cardiovascular (CV) protective effects. However, evidences from basic to clinical research have contributed to depict a role of HDL in the modulation of immune-inflammatory response thus paving the road to investigate their involvement in other diseases beyond those related to the CV system. HDL-C levels and HDL composition are indeed altered in patients with autoimmune diseases and usually associated to disease severity. At molecular levels, HDL have been shown to modulate the anti-inflammatory potential of endothelial cells and, by controlling the amount of cellular cholesterol, to interfere with the signaling through plasma membrane lipid rafts in immune cells. These findings, coupled to observations acquired from subjects carrying mutations in genes related to HDL system, have helped to elucidate the contribution of HDL beyond cholesterol efflux thus posing HDL-based therapies as a compelling interventional approach to limit the inflammatory burden of immune-inflammatory diseases
Update on the management of severe hypertriglyceridemia : focus on free fatty acid forms of omega-3
High levels of plasma triglycerides (TG) are a risk factor for cardiovascular diseases, often associated with anomalies in other lipids or lipoproteins. Hypertriglyceridemia (HTG), particularly at very high levels, significantly increases also the risk of acute pancreatitis. Thus, interventions to lower TG levels are required to reduce the risk of pancreatitis and cardiovascular disease. Several strategies may be adopted for TG reduction, including lifestyle changes and pharmacological interventions. Among the available drugs, the most commonly used for HTG are fibrates, nicotinic acid, and omega-3 polyunsaturated fatty acids (usually a mixture of eicosapentaenoic acid, or EPA, and docosahexaenoic acid, or DHA). These last are available under different concentrated formulations containing high amounts of omega-3 fatty acids, including a mixture of EPA and DHA or pure EPA. The most recent formulation contains a free fatty acid (FFA) form of EPA and DHA, and exhibits a significantly higher bioavailability compared with the ethyl ester forms contained in the other formulations. This is due to the fact that the ethyl ester forms, to be absorbed, need to be hydrolyzed by the pancreatic enzymes that are secreted in response to fat intake, while the FFA do not. This higher bioavailability translates into a higher TG-lowering efficacy compared with the ethyl ester forms at equivalent doses. Omega-3 FFA are effective in reducing TG levels and other lipids in hypertriglyceridemic patients as well as in high cardiovascular risk patients treated with statins and residual HTG. Currently, omega-3 FFA formulation is under evaluation to establish whether, in high cardiovascular risk subjects, the addition of omega-3 to statin therapy may prevent or reduce major cardiovascular events
Twelve Variants Polygenic Score for Low-Density Lipoprotein Cholesterol Distribution in a Large Cohort of Patients With Clinically Diagnosed Familial Hypercholesterolemia With or Without Causative Mutations
BACKGROUND: A significant proportion of individuals clinically diagnosed with familial hypercholesterolemia (FH), but without
any disease-causing
mutation, are likely to have polygenic hypercholesterolemia. We evaluated the distribution of a polygenic
risk score, consisting of 12 low-density
lipoprotein cholesterol (LDL-C)-
raising
variants (polygenic LDL-C
risk score), in subjects
with a clinical diagnosis of FH.
METHODS AND RESULTS: Within the Lipid Transport Disorders Italian Genetic Network (LIPIGEN) study, 875 patients who were FH-mutation
positive (women, 54.75%; mean age, 42.47±15.00 years) and 644 patients who were FH-mutation
negative (women, 54.21%;
mean age, 49.73±13.54 years) were evaluated. Patients who were FH-mutation
negative had lower mean levels of pretreatment
LDL-C
than patients who were FH-mutation
positive (217.14±55.49 versus 270.52±68.59 mg/dL, P<0.0001). The mean value (±SD)
of the polygenic LDL-C
risk score was 1.00 (±0.18) in patients who were FH-mutation
negative and 0.94 (±0.20) in patients who were
FH-mutation
positive (P<0.0001). In the receiver operating characteristic analysis, the area under the curve for recognizing subjects
characterized by polygenic hypercholesterolemia was 0.59 (95% CI, 0.56–0.62),
with sensitivity and specificity being 78% and 36%,
respectively, at 0.905 as a cutoff value. Higher mean polygenic LDL-C
risk score levels were observed among patients who were FH-mutation
negative having pretreatment LDL-C
levels in the range of 150 to 350 mg/dL (150–249
mg/dL: 1.01 versus 0.91, P<0.0001;
250–349
mg/dL: 1.02 versus 0.95, P=0.0001). A positive correlation between polygenic LDL-C
risk score and pretreatment LDL-C
levels was observed among patients with FH independently of the presence of causative mutations.
CONCLUSIONS: This analysis confirms the role of polymorphisms in modulating LDL-C
levels, even in patients with genetically
confirmed FH. More data are needed to support the use of the polygenic score in routine clinical practice
In patients with Polycythemia Vera older age is the prognostic factor at highest impact on survival
Association between OLR1 K167N SNP and intima media thickness of the common carotid artery in the general population
Background and Purpose: The lectin-like oxidised LDL receptor-1 (OLR1) gene encodes a scavenger receptor implicated in the pathogenesis of atherosclerosis. Although functional roles have been suggested for two variants, epidemiological studies on OLR1 have been inconsistent. Methods - We tested the association between the non-synonymous substitution K167N (rs11053646) and intima media thickness of the common carotid artery (CCA-IMT) in 2,141 samples from the Progression of Lesions in the Intima of the Carotid (PLIC) study (a prospective population-based study). Results: Significantly increased IMT was observed in male carriers of the minor C (N) allele compared to GC and GG (KN and KK) genotype. Functional analysis on macrophages suggested a decreased association to Ox-LDL in NN carriers compared to KN and KK carriers which is also associated with a reduced OLR1 mRNA expression. Macrophages from NN carriers present also a specific inflammatory gene expression pattern compared to cells from KN and KK carriers. Conclusions: These data suggest that the 167N variant of LOX-1 receptor affects the atherogenic process in the carotid artery prior to evidence of disease through an inflammatory process. © 2012 Predazzi et al
Modification of HDL3 by mild oxidative stress increases ATP-binding cassette transporter 1-mediated cholesterol efflux
OBJECTIVE: Elevated levels of high-density lipoprotein (HDL) cholesterol are inversely related to the risk of cardiovascular disease. The anti-atherosclerotic function of HDL is mainly ascribed to its role in reverse cholesterol transport, and requires the integrity of HDL structure. Experimental evidence suggests that the ability of HDL to promote removal of excess cholesterol from peripheral cells is impaired upon oxidation. On the other hand, tyrosylation of HDL enhances its protective function, suggesting that not all forms of modified lipoprotein may be atherogenic. In the present study we investigated the effect of a mild oxidation of HDL(3) on its function as cholesterol acceptor. METHODS AND RESULTS: A mild oxidative stress (induced by 15 min exposure of HDL(3) to 1 microM Cu(++) or to 15-lipoxygenase) caused the formation of pre-beta-migrating particles. Compared to native lipoprotein, mildly modified HDL(3) induced a significant ATP-binding cassette transporter 1 (ABCA1)-mediated increase of cholesterol and phospholipids efflux from J774 macrophages. This effect was abolished by an inhibitor of ABCA1-mediated lipid efflux (glyburide) and was absent in Tangier fibroblasts. CONCLUSIONS: A mild oxidative modification of HDL(3) may improve its function as cholesterol acceptor, increasing ABCA1-mediated lipid efflux from macrophages, a process that may reduce foam cell formation
Neonatal Urine Metabolic Profiling and Development of Childhood Asthma
none9Urine metabolomics case-control studies of childhood asthma have demonstrated a discriminative ability. Here, we investigated whether urine metabolic profiles from healthy neonates were associated with the development of asthma in childhood. Untargeted metabolomics by liquid chromatography-mass spectrometry was applied to urine samples collected at age 4 weeks in 171 and 161 healthy neonates born from mothers with asthma from the COPSAC2000 and COPSAC2010 cohorts, respectively, where persistent wheeze/asthma was prospectively diagnosed using a symptom-based algorithm. Univariate and multivariate analyses were applied to investigate differences in metabolic profiles between children who developed asthma and healthy children. Univariate analysis showed 63 and 87 metabolites (q-value 0.60. Database search enabled annotation of three discriminative features: a glucoronidated compound (steroid), 3-hydroxytetradecanedioic acid (fatty acid), and taurochenodeoxycholate-3-sulfate (bile acid). The urine metabolomics profiles from healthy neonates were associated with the development of childhood asthma, but further research is needed to understand underlying metabolic pathways.noneChawes, Bo L; Giordano, Giuseppe; Pirillo, Paola; Rago, Daniela; Rasmussen, Morten A; Stokholm, Jakob; Bønnelykke, Klaus; Bisgaard, Hans; Baraldi, EugenioChawes, Bo L; Giordano, Giuseppe; Pirillo, Paola; Rago, Daniela; Rasmussen, Morten A; Stokholm, Jakob; Bønnelykke, Klaus; Bisgaard, Hans; Baraldi, Eugeni
- …
