1,542 research outputs found

    Microalgae Cultures: Environmental Tool and Bioenergy

    Get PDF
    [No abstract available

    Rodent models of heart failure: an updated review

    Get PDF
    Heart failure (HF) is one of the major health and economic burdens worldwide, and its prevalence is continuously increasing. The study of HF requires reliable animal models to study the chronic changes and pharmacologic interventions in myocardial structure and function and to follow its progression toward HF. Indeed, during the past 40 years, basic and translational scientists have used small animal models to understand the pathophysiology of HF and find more efficient ways of preventing and managing patients suffering from congestive HF (CHF). Each species and each animal model has advantages and disadvantages, and the choice of one model over another should take them into account for a good experimental design. The aim of this review is to describe and highlight the advantages and drawbacks of some commonly used HF rodents models, including both non-genetically and genetically engineered models, with a specific subchapter concerning diastolic HF models

    Microalgal cultures for the remediation of wastewaters with different nitrogen to phosphorus ratios: Process modelling using artificial neural networks

    Get PDF
    Microalgae have remarkable potential for wastewater bioremediation since they can efficiently uptake nitrogen and phosphorus in a sustainable and environmentally friendly treatment system. However, wastewater composition greatly depends on its source and has a significant seasonal variability. This study aimed to evaluate the impact of different N:P molar ratios on the growth of Chlorella vulgaris and nutrient removal from synthetic wastewater. Furthermore, artificial neural network (ANN) threshold models, optimised by genetic algorithms (GAs), were used to model biomass productivity (BP) and nitrogen/phosphorus removal rates (RRN/RRP). The impact of various inputs culture variables on these parameters was evaluated. Microalgal growth was not nutrient limited since the average biomass productivities and specific growth rates were similar between the experiments. Nutrient removal efficiencies/rates reached 92.0 +/- 0.6%/6.15 +/- 0.01 mgN L-1 d-1 for nitrogen and 98.2 +/- 0.2%/0.92 +/- 0.03 mgP L-1 d-1 for phosphorus. Low nitrogen concentration limited phosphorus uptake for low N:P ratios (e.g., 2 and 3, yielding 36 +/- 2 mgDW mgP-1 and 39 +/- 3 mgDW mgP-1, respectively), while low phosphorus concentration limited nitrogen uptake with high ratios (e.g., 66 and 67, yielding 9.0 +/- 0.4 mgDW mgN-1 and 8.8 +/- 0.3 mgDW mgN-1, respectively). ANN models showed a high fitting performance, with coefficients of determination of 0.951, 0.800, and 0.793 for BP, RRN, and RRP, respectively. In summary, this study demonstrated that microalgae could successfully grow and adapt to N:P molar ratios between 2 and 67, but the nutrient uptake was impacted by these variations, especially for the lowest and highest N:P molar ratios. Furthermore, GA-ANN models demonstrated to be relevant tools for microalgal growth modelling and control. Their high fitting performance in characterising this biological system can contribute to reducing the experi-mental effort for culture monitoring (human resources and consumables), thus decreasing the costs of microalgae production

    Urotensin II-Induced Increase in Myocardial Distensibility Is Modulated by Angiotensin II and Endothelin-1

    Get PDF
    Endogenous regulators, such as angiotensin-II (AngII), endothelin-1 (ET-1) and urotensin-II (U-II) are released from various cell types and their plasma levels are elevated in several cardiovascular diseases. The present study evaluated a potential crosstalk between these systems by investigating if the myocardial effects of U-II are modulated by AngII or ET-1. Effects of U-II (10(-8), 10(-7), 10(-6) M) were tested in rabbit papillary muscles in the absence and in the presence of losartan (selective AT, receptor antagonist), PD-145065 (nonselective ET-1 receptors antagonist), losartan plus PD-145065, AngII or ET-1. U-II promoted concentration-dependent negative inotropic and lusitropic effects that were abolished in all experimental conditions. Also, U-II increased resting muscle length up to 1.008 +/- 0.002 L/L(max). Correcting it to its initial value resulted in a 19.5 +/- 3.5 % decrease of resting tension, indicating increased muscle distensibility. This effect on muscle length was completely abolished in the presence of losartan and significantly attenuated by PD-145065 or losartan plus PD-145065. This effect was increased in the presence of AngII, resulting in a 27.5 +/- 3.9 % decrease of resting tension, but was unaffected by the presence of ET-1. This study demonstrated an interaction of the U-II system with the AngII and ET-1 systems in terms of regulation of systolic and diastolic function

    Microalgal Cultures for the Bioremediation of Urban Wastewaters in the Presence of Siloxanes

    Get PDF
    Microalgae are widely used in the bioremediation of wastewaters due to their efficient removal of pollutants such as nitrogen, phosphorus, and contaminants of emerging concern (CECs). Siloxanes are CECs that reach wastewater treatment plants (WWTPs), leading to the production of biogas enriched with these compounds, associated with the breakdown of cogeneration equipment. The biological removal of siloxanes from wastewaters could be a sustainable alternative to the costly existing technologies, but no investigation has been performed using microalgal cultures for this purpose. This study evaluated the ability of Chlorella vulgaris to bioremediate primary (PE) and secondary (SE) urban effluents and remove volatile methylsiloxanes (VMSs). C. vulgaris grew successfully in both effluents, and approximately 86% of nitrogen and 80% of phosphorus were efficiently removed from the PE, while 52% of nitrogen and 87% of phosphorus were removed from the SE, and the presence of VMSs does not seem to have a negative influence on nutrient removal. Three out of the seven of the analysed VMSs were detected in the microalgal biomass at the end of the PE assay. However, dodecamethylcyclohexasiloxane (D6) was the one that accumulated to a greater extent, since 48% of the initial mass of D6 was detected in the biomass samples. D6 is one of the most lipophilic VMSs, which might contribute to the higher adsorption onto the surface of microalgae. Overall, the results indicate C. vulgaris' potential to remove specific VMSs from effluents

    Mycobacterial immune reconstitution inflammatory syndrome in HIV-1 infection after antiretroviral therapy is associated with deregulated specific T-cell responses: Beneficial effect of IL-2 and GM-CSF immunotherapy

    Get PDF
    BACKGROUND: With the advent of antiretroviral therapy (ART) cases of immune reconstitution inflammatory syndrome (IRIS) have increasingly been reported. IRIS usually occurs in individuals with a rapidly rising CD4 T-cell count or percentage upon initiation of ART, who develop a deregulated immune response to infection with or without reactivation of opportunistic organisms. Here, we evaluated rises in absolute CD4 T-cells, and specific CD4 T-cell responses in 4 HIV-1(+ )individuals presenting with mycobacterial associated IRIS who received in conjunction with ART, IL-2 plus GM-CSF immunotherapy. METHODS: We assessed CD4 T-cell counts, HIV-1 RNA loads, phenotype for naïve and activation markers, and in vitro proliferative responses. Results were compared with those observed in 11 matched, successfully treated asymptomatic clinical progressors (CP) with no evidence of opportunistic infections, and uninfected controls. RESULTS: Median CD4 T-cell counts in IRIS patients rose from 22 cells/μl before initiation of ART, to 70 cells/μl after 8 months of therapy (median 6.5 fold increase). This coincided with IRIS diagnosis, lower levels of naïve CD4 T-cells, increased expression of immune activation markers, and weak CD4 T-cell responses. In contrast, CP had a median CD4 T-cell counts of 76 cells/μl at baseline, which rose to 249 cells/μl 6 months post ART, when strong T-cell responses were seen in > 80% of patients. Higher levels of expression of immune activation markers were seen in IRIS patients compared to CP and UC (IRIS > CP > UC). Immunotherapy with IL-2 and GM-CSF paralleled clinical recovery. CONCLUSION: These data suggest that mycobacterial IRIS is associated with inadequate immune reconstitution rather than vigorous specific T-cell responses, and concomitant administration of IL-2 and GM-CSF immunotherapy with effective ART may correct/augment T-cell immunity in such setting resulting in clinical benefit

    pdCSM-cancer: Using Graph-Based Signatures to Identify Small Molecules with Anticancer Properties.

    Get PDF
    The development of new, effective, and safe drugs to treat cancer remains a challenging and time-consuming task due to limited hit rates, restraining subsequent development efforts. Despite the impressive progress of quantitative structure-activity relationship and machine learning-based models that have been developed to predict molecule pharmacodynamics and bioactivity, they have had mixed success at identifying compounds with anticancer properties against multiple cell lines. Here, we have developed a novel predictive tool, pdCSM-cancer, which uses a graph-based signature representation of the chemical structure of a small molecule in order to accurately predict molecules likely to be active against one or multiple cancer cell lines. pdCSM-cancer represents the most comprehensive anticancer bioactivity prediction platform developed till date, comprising trained and validated models on experimental data of the growth inhibition concentration (GI50%) effects, including over 18,000 compounds, on 9 tumor types and 74 distinct cancer cell lines. Across 10-fold cross-validation, it achieved Pearson's correlation coefficients of up to 0.74 and comparable performance of up to 0.67 across independent, non-redundant blind tests. Leveraging the insights from these cell line-specific models, we developed a generic predictive model to identify molecules active in at least 60 cell lines. Our final model achieved an area under the receiver operating characteristic curve (AUC) of up to 0.94 on 10-fold cross-validation and up to 0.94 on independent non-redundant blind tests, outperforming alternative approaches. We believe that our predictive tool will provide a valuable resource to optimizing and enriching screening libraries for the identification of effective and safe anticancer molecules. To provide a simple and integrated platform to rapidly screen for potential biologically active molecules with favorable anticancer properties, we made pdCSM-cancer freely available online at http://biosig.unimelb.edu.au/pdcsm_cancer

    Computational saturation mutagenesis to predict structural consequences of systematic mutations in the beta subunit of RNA polymerase in Mycobacterium leprae

    Get PDF
    ABSTRACT In contrast to the situation with tuberculosis, rifampin resistance in leprosy may remain undetected due to the lack of rapid and effective diagnostic methods. A quick and reliable method is essential to determine the impacts of emerging detrimental mutations. The functional consequences of missense mutations within the β-subunit of RNA polymerase in Mycobacterium leprae ( M. leprae ) contribute to phenotypic rifampin resistance outcomes in leprosy. Here we report in-silico saturation mutagenesis of all residues in the β-subunit of RNA polymerase to all other 19 amino acid types and predict their impacts on overall thermodynamic stability, on interactions at subunit interfaces, and on β-subunit-RNA and rifampin affinities using state-of-the-art structure, sequence and normal mode analysis-based methods. A total of 21,394 mutations were analysed, and it was noted that mutations in the conserved residues that line the active-site cleft show largely destabilizing effects, resulting in increased relative solvent accessibility and concomitant decrease in depth of the mutant residues. The mutations at residues S437, G459, H451, P489, K884 and H1035 are identified as extremely detrimental as they induce highly destabilizing effects on the overall stability, nucleic acid and rifampin affinities. Destabilizing effects were predicted for all the experimentally identified rifampin-resistant mutations in M. leprae indicating that this model can be used as a surveillance tool to monitor emerging detrimental mutations conferring rifampin resistance in leprosy. AUTHOR SUMMARY Emergence of primary and secondary drug resistance to rifampin in leprosy is a growing concern and poses threat to the leprosy control and elimination measures globally. In the absence of an effective in-vitro system to detect and monitor phenotypic rifampin resistance in leprosy, most of the diagnosis relies on detecting mutations in the drug resistance determining regions of the rpoB gene that encodes the β subunit of RNA polymerase in M. leprae . Few labs in the world perform mouse food pad propagation of M. leprae in the presence of drugs (rifampin) to determine growth patterns and confirm resistance, however the duration of these methods lasts from 8 to 12 months making them impractical for diagnosis. Understanding molecular mechanisms of drug resistance is vital to associating mutations to clinical resistance outcomes in leprosy. Here we propose an in-silico saturation mutagenesis approach to comprehensively elucidate the structural implications of any mutations that exist or can arise in the β subunit of RNA polymerase in M. leprae . Most of the predicted mutations may not occur in M. leprae due to fitness costs but the information thus generated by this approach help decipher the impacts of mutations across the structure and conversely enable identification of stable regions in the protein that are least impacted by mutations (mutation coolspots) which can be a choice for small molecule binding and structure guided drug discovery

    Microalgal Growth in Paper Industry Effluent: Coupling Biomass Production with Nutrients Removal

    Get PDF
    Paper and pulp industries produce effluents with high phosphorus concentrations, which need to be treated before their discharge in watercourses. The use of microalgae for this purpose has attracted the attention of researchers because: (i) microalgae can assimilate phosphorus (one of the main nutrients for their growth); and (ii) growing on effluents can significantly reduce the costs and environmental impact of microalgal biomass production. This study evaluated the growth and ability of Chlorella vulgaris to remove the phosphorus from a secondary-treated effluent of a Portuguese paper company. Batch experiments were performed for 11 days using different dilutions of the effluent to evaluate its inhibitory effect on microalgae. Results showed that the non-diluted effluent inhibited microalgal growth, indicating that this bioremediation process is possible after a previous dilution of the effluent. Regarding phosphorus removal, promising results were achieved, especially in the experiments conducted with the most diluted effluent: removal efficiencies obtained in these conditions were (54 +/- 1)%. Another interesting finding of this study was microalgal growth in flakes' form (mainly due to the compounds present in the effluent and to the pH values achieved), which can be an important economic advantage for biomass recovery after the remediation step
    corecore