24 research outputs found

    mCSM-AB: a web server for predicting antibody-antigen affinity changes upon mutation with graph-based signatures.

    Get PDF
    Computational methods have traditionally struggled to predict the effect of mutations in antibody-antigen complexes on binding affinity. This has limited their usefulness during antibody engineering and development, and their ability to predict biologically relevant escape mutations. Here we present mCSM-AB, a user-friendly web server for accurately predicting antibody-antigen affinity changes upon mutation which relies on graph-based signatures. We show that mCSM-AB performs better than comparable methods that have been previously used for antibody engineering. mCSM-AB web server is available at http://structure.bioc.cam.ac.uk/mcsm_ab.This is the final published version. It first appeared at http://nar.oxfordjournals.org/content/early/2016/05/23/nar.gkw458.full

    Adapting Pretrained Language Models for Solving Tabular Prediction Problems in the Electronic Health Record

    Full text link
    We propose an approach for adapting the DeBERTa model for electronic health record (EHR) tasks using domain adaptation. We pretrain a small DeBERTa model on a dataset consisting of MIMIC-III discharge summaries, clinical notes, radiology reports, and PubMed abstracts. We compare this model's performance with a DeBERTa model pre-trained on clinical texts from our institutional EHR (MeDeBERTa) and an XGBoost model. We evaluate performance on three benchmark tasks for emergency department outcomes using the MIMIC-IV-ED dataset. We preprocess the data to convert it into text format and generate four versions of the original datasets to compare data processing and data inclusion. The results show that our proposed approach outperforms the alternative models on two of three tasks (p<0.001) and matches performance on the third task, with the use of descriptive columns improving performance over the original column names

    mCSM-lig: quantifying the effects of mutations on protein-small molecule affinity in genetic disease and emergence of drug resistance.

    Get PDF
    The ability to predict how a mutation affects ligand binding is an essential step in understanding, anticipating and improving the design of new treatments for drug resistance, and in understanding genetic diseases. Here we present mCSM-lig, a structure-guided computational approach for quantifying the effects of single-point missense mutations on affinities of small molecules for proteins. mCSM-lig uses graph-based signatures to represent the wild-type environment of mutations, and small-molecule chemical features and changes in protein stability as evidence to train a predictive model using a representative set of protein-ligand complexes from the Platinum database. We show our method provides a very good correlation with experimental data (up to ρ = 0.67) and is effective in predicting a range of chemotherapeutic, antiviral and antibiotic resistance mutations, providing useful insights for genotypic screening and to guide drug development. mCSM-lig also provides insights into understanding Mendelian disease mutations and as a tool for guiding protein design. mCSM-lig is freely available as a web server at http://structure.bioc.cam.ac.uk/mcsm_lig.Newton Fund RCUK-CONFAP Grant awarded by The Medical Research Council (MRC) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) [MR/M026302/1 to D.E.V.P, T.L.B. and D.B.A.]. René Rachou Research Center (CPqRR/FIOCRUZ Minas), Brazil [to D.E.V.P.]; NHMRC CJ Martin Fellowship [APP1072476 to D.B.A.]; University of Cambridge and The Wellcome Trust for facilities and support [to T.L.B.].This is the final version of the article. It first appeared from Nature Publishing Group at http://dx.doi.org/10.1038/srep29575

    pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures.

    Get PDF
    Drug development has a high attrition rate, with poor pharmacokinetic and safety properties a significant hurdle. Computational approaches may help minimize these risks. We have developed a novel approach (pkCSM) which uses graph-based signatures to develop predictive models of central ADMET properties for drug development. pkCSM performs as well or better than current methods. A freely accessible web server (http://structure.bioc.cam.ac.uk/pkcsm), which retains no information submitted to it, provides an integrated platform to rapidly evaluate pharmacokinetic and toxicity properties.Newton Fund RCUK-CONFAP grant awarded by The Medical Research Council (MRC) and Fundac a o de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG) [to D.E.V.P., T.L.B,. and D.B.A.]; Conselho Nacional de Desenvolvimento Cienti fi co e Tecnolo gico (CNPq), and Centro de Pesquisas Rene Rachou (CPqRR/FIOCRUZ Minas), Brazil [to D.E.V.P.]; NHMRC CJ Martin Fellowship [APP1072476 to D.B.A.]; University of Cambridge and The Wellcome Trust for facilities and support [to T.L.B.]. Funding for open access charge: The Wellcome Trust.This is the final version. It was first published by ACS at http://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.5b00104

    DynaMut: predicting the impact of mutations on protein conformation, flexibility and stability.

    Get PDF
    Proteins are highly dynamic molecules, whose function is intrinsically linked to their molecular motions. Despite the pivotal role of protein dynamics, their computational simulation cost has led to most structure-based approaches for assessing the impact of mutations on protein structure and function relying upon static structures. Here we present DynaMut, a web server implementing two distinct, well established normal mode approaches, which can be used to analyze and visualize protein dynamics by sampling conformations and assess the impact of mutations on protein dynamics and stability resulting from vibrational entropy changes. DynaMut integrates our graph-based signatures along with normal mode dynamics to generate a consensus prediction of the impact of a mutation on protein stability. We demonstrate our approach outperforms alternative approaches to predict the effects of mutations on protein stability and flexibility (P-value < 0.001), achieving a correlation of up to 0.70 on blind tests. DynaMut also provides a comprehensive suite for protein motion and flexibility analysis and visualization via a freely available, user friendly web server at http://biosig.unimelb.edu.au/dynamut/

    DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach.

    Get PDF
    Cancer genome and other sequencing initiatives are generating extensive data on non-synonymous single nucleotide polymorphisms (nsSNPs) in human and other genomes. In order to understand the impacts of nsSNPs on the structure and function of the proteome, as well as to guide protein engineering, accurate in silicomethodologies are required to study and predict their effects on protein stability. Despite the diversity of available computational methods in the literature, none has proven accurate and dependable on its own under all scenarios where mutation analysis is required. Here we present DUET, a web server for an integrated computational approach to study missense mutations in proteins. DUET consolidates two complementary approaches (mCSM and SDM) in a consensus prediction, obtained by combining the results of the separate methods in an optimized predictor using Support Vector Machines (SVM). We demonstrate that the proposed method improves overall accuracy of the predictions in comparison with either method individually and performs as well as or better than similar methods. The DUET web server is freely and openly available at http://structure.bioc.cam.ac.uk/duet

    In silico functional dissection of saturation mutagenesis: Interpreting the relationship between phenotypes and changes in protein stability, interactions and activity.

    Get PDF
    Despite interest in associating polymorphisms with clinical or experimental phenotypes, functional interpretation of mutation data has lagged behind generation of data from modern high-throughput techniques and the accurate prediction of the molecular impact of a mutation remains a non-trivial task. We present here an integrated knowledge-driven computational workflow designed to evaluate the effects of experimental and disease missense mutations on protein structure and interactions. We exemplify its application with analyses of saturation mutagenesis of DBR1 and Gal4 and show that the experimental phenotypes for over 80% of the mutations correlate well with predicted effects of mutations on protein stability and RNA binding affinity. We also show that analysis of mutations in VHL using our workflow provides valuable insights into the effects of mutations, and their links to the risk of developing renal carcinoma. Taken together the analyses of the three examples demonstrate that structural bioinformatics tools, when applied in a systematic, integrated way, can rapidly analyse a given system to provide a powerful approach for predicting structural and functional effects of thousands of mutations in order to reveal molecular mechanisms leading to a phenotype. Missense or non-synonymous mutations are nucleotide substitutions that alter the amino acid sequence of a protein. Their effects can range from modifying transcription, translation, processing and splicing, localization, changing stability of the protein, altering its dynamics or interactions with other proteins, nucleic acids and ligands, including small molecules and metal ions. The advent of high-throughput techniques including sequencing and saturation mutagenesis has provided large amounts of phenotypic data linked to mutations. However, one of the hurdles has been understanding and quantifying the effects of a particular mutation, and how they translate into a given phenotype. One approach to overcome this is to use robust, accurate and scalable computational methods to understand and correlate structural effects of mutations with disease.Newton Fund RCUK-CONFAP Grant awarded by The Medical Research Council (MRC) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) [to D.E.V.P, T.L.B. and D.B.A.]. Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and René Rachou Research Center (CPqRR/FIOCRUZ Minas), Brazil [to D.E.V.P.]; NHMRC CJ Martin Fellowship [APP1072476 to D.B.A.]; University of Cambridge and The Wellcome Trust for facilities and support [to T.L.B.]. Funding for open access charge: The Wellcome Trust.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/srep1984
    corecore