19 research outputs found

    Frequency-dependent impedance of nanocapacitors from electrode charge fluctuations as a probe of electrolyte dynamics

    Full text link
    The frequency-dependent impedance is a fundamental property of electrical components. We show that it can be determined from the equilibrium dynamical fluctuations of the electrode charge in constant-potential molecular simulations, extending in particular a fluctuation-dissipation for the capacitance recovered in the low-frequency limit and provide an illustration on water/gold nanocapacitors. This work opens the way to the interpretation of electrochemical impedance measurements in terms of microscopic mechanisms, directly from the dynamics of the electrolyte, or indirectly via equivalent circuit models as in experiments

    Ranking the synthesizability of hypothetical zeolites with the sorting hat

    Get PDF
    Zeolites are nanoporous alumino-silicate frameworks widely used as catalysts and adsorbents. Even though millions of siliceous networks can be generated by computer-aided searches, no new hypothetical framework has yet been synthesized. The needle-in-a-haystack problem of finding promising candidates among large databases of predicted structures has intrigued materials scientists for decades; yet, most work to date on the zeolite problem has been limited to intuitive structural descriptors. Here, we tackle this problem through a rigorous data science scheme—the “Zeolite Sorting Hat”—that exploits interatomic correlations to discriminate between real and hypothetical zeolites and to partition real zeolites into compositional classes that guide synthetic strategies for a given hypothetical framework. We find that, regardless of the structural descriptor used by the Zeolite Sorting Hat, there remain hypothetical frameworks that are incorrectly classified as real ones, suggesting that they might be good candidates for synthesis. We seek to minimize the number of such misclassified frameworks by using as complete a structural descriptor as possible, thus focusing on truly viable synthetic targets, while discovering structural features that distinguish real and hypothetical frameworks as an output of the Zeolite Sorting Hat. Further ranking of the candidates can be achieved based on thermodynamic stability and/or their suitability for the desired applications. Based on this workflow, we propose three hypothetical frameworks differing in their molar volume range as the top targets for synthesis, each with a composition suggested by the Zeolite Sorting Hat. Finally, we analyze the behavior of the Zeolite Sorting Hat with a hierarchy of structural descriptors including intuitive descriptors reported in previous studies, finding that intuitive descriptors produce significantly more misclassified hypothetical frameworks, and that more rigorous interatomic correlations point to second-neighbor Si–O distances around 3.2–3.4 Å as the key discriminatory factor

    INfluenza Vaccine Indication During therapy with Immune checkpoint inhibitors: a transversal challenge. The INVIDIa study

    Get PDF
    Aim: Considering the unmet need for the counseling of cancer patients treated with immune checkpoint inhibitors (CKI) about influenza vaccination, an explorative study was planned to assess flu vaccine efficacy in this population. Methods: INVIDIa was a retrospective, multicenter study, enrolling consecutive advanced cancer outpatients receiving CKI during the influenza season 2016-2017. Results: Of 300 patients, 79 received flu vaccine. The incidence of influenza syndrome was 24.1% among vaccinated, versus 11.8% of controls; odds ratio: 2.4; 95% CI: 1.23-4.59; p = 0.009. The clinical ineffectiveness of vaccine was more pronounced among elderly: 37.8% among vaccinated patients, versus 6.1% of unvaccinated, odds ratio: 9.28; 95% CI: 2.77-31.14; p < 0.0001. Conclusion: Although influenza vaccine may be clinically ineffective in advanced cancer patients receiving CKI, it seems not to negatively impact the efficacy of anticancer therapy

    A molecular perspective on induced charges on a metallic surface

    Get PDF
    International audienceUnderstanding the response of the surface of metallic solids to external electric field sources is crucial to characterize electrode–electrolyte interfaces. Continuum electrostatics offer a simple description of the induced charge density at the electrode surface. However, such a simple description does not take into account features related to the atomic structure of the solid and to the molecular nature of the solvent and of the dissolved ions. In order to illustrate such effects and assess the ability of continuum electrostatics to describe the induced charge distribution, we investigate the behavior of a gold electrode interacting with sodium or chloride ions fixed at various positions, in a vacuum or in water, using all-atom constant-potential classical molecular dynamics simulations. Our analysis highlights important similarities between the two approaches, especially under vacuum conditions and when the ion is sufficiently far from the surface, as well as some limitations of the continuum description, namely, neglecting the charges induced by the adsorbed solvent molecules and the screening effect of the solvent when the ion is close to the surface. While the detailed features of the charge distribution are system-specific, we expect some of our generic conclusions on the induced charge density to hold for other ions, solvents, and electrode surfaces. Beyond this particular case, the present study also illustrates the relevance of such molecular simulations to serve as a reference for the design of improved implicit solvent models of electrode–electrolyte interfaces
    corecore