1,659 research outputs found

    Brain connectivity changes after osteopathic manipulative treatment: A randomized manual placebo-controlled trial

    Get PDF
    The effects of osteopathic manipulative treatment (OMT) on functional brain connectivity in healthy adults is missing in the literature. To make up for this lack, we applied advanced network analysis methods to analyze resting state functional magnetic resonance imaging (fMRI) data, after OMT and Placebo treatment (P) in 30 healthy asymptomatic young participants randomized into OMT and placebo groups (OMTg; Pg). fMRI brain activity measures, performed before (T0), immediately after (T1) and three days after (T2) OMT or P were used for inferring treatment effects on brain circuit functional organization. Repeated measures ANOVA and post-hoc analysis demonstrated that Right Precentral Gyrus (F (2, 32) = 5.995, p < 0.005) was more influential over the information flow immediately after the OMT, while decreased betweenness centrality in Left Caudate (F (2, 32) = 6.496, p < 0.005) was observable three days after. Clustering coefficient showed a distinct time-point and group effect. At T1, reduced neighborhood connectivity was observed after OMT in the Left Amygdala (L-Amyg) (F(2, 32) = 7.269, p < 0.005) and Left Middle Temporal Gyrus (F(2, 32) = 6.452, p < 0.005), whereas at T2 the L-Amyg and Vermis-III (F(2, 32) = 6.772, p < 0.005) increased functional interactions. Data demonstrated functional connectivity re-arrangement after OMT

    Correlated electron-hole plasma in organometal perovskites

    Get PDF
    Organic-inorganic perovskites are a class of solution-processed semiconductors holding promise for the realization of low-cost efficient solar cells and on-chip lasers. Despite the recent attention they have attracted, fundamental aspects of the photophysics underlying device operation still remain elusive. Here we use photoluminescence and transmission spectroscopy to show that photoexcitations give rise to a conducting plasma of unbound but Coulomb-correlated electron-hole pairs at all excitations of interest for light-energy conversion and stimulated optical amplification. The conductive nature of the photoexcited plasma has crucial consequences for perovskite-based devices: in solar cells, it ensures efficient charge separation and ambipolar transport while, concerning lasing, it provides a low threshold for light amplification and justifies a favourable outlook for the demonstration of an electrically driven laser. We find a significant trap density, whose cross-section for carrier capture is however low, yielding a minor impact on device performance

    Investigating parameter transferability across models and events for a Semiarid Mediterranean Catchment

    Get PDF
    Physically based distributed hydrologic models (DHMs) simulate watershed processes by applying physical equations with a variety of simplifying assumptions and discretization approaches. These equations depend on parameters that, in most cases, can be measured and, theoretically, transferred across different types of DHMs. The aim of this study is to test the potential of parameter transferability in a real catchment for two contrasting periods among three DHMs of varying complexity. The case study chosen is a small Mediterranean catchment where the TIN-based Real-time Integrated Basin Simulator (tRIBS) model was previously calibrated and tested. The same datasets and parameters are used here to apply two other DHMs-the TOPographic Kinematic Approximation and Integration model (TOPKAPI) and CATchment HYdrology (CATHY) models. Model performance was measured against observed discharge at the basin outlet for a one-year period (1930) corresponding to average wetness conditions for the region, and for a much drier two-year period (1931-1932). The three DHMs performed comparably for the 1930 period but showed more significant differences (the CATHY model in particular for the dry period. In order to improve the performance of CATHY for this latter period, an hypothesis of soil crusting was introduced, assigning a lower saturated hydraulic conductivity to the top soil layer. It is concluded that, while the physical basis for the three models allowed transfer of parameters in a broad sense, transferability can break down when simulation conditions are greatly altered

    Quaternary ammonium chitosans: The importance of the positive fixed charge of the drug delivery systems

    Get PDF
    As a natural polysaccharide, chitosan has good biocompatibility, biodegradability and biosecurity. The hydroxyl and amino groups present in its structure make it an extremely versatile and chemically modifiable material. In recent years, various synthetic strategies have been used to modify chitosan, mainly to solve the problem of its insolubility in neutral physiological fluids. Thus, derivatives with negative or positive fixed charge were synthesized and used to prepare innovative drug delivery systems. Positively charged conjugates showed improved properties compared to unmodified chitosan. In this review the main quaternary ammonium derivatives of chitosan will be considered, their preparation and their applications will be described to evaluate the impact of the positive fixed charge on the improvement of the properties of the drug delivery systems based on these polymers. Furthermore, the performances of the proposed systems resulting from in vitro and ex vivo experiments will be taken into consideration, with particular attention to cytotoxicity of systems, and their ability to promote drug absorption

    Age-related changes in the energy of human mesenchymal stem cells

    Get PDF
    Aging is a physiological process that leads to a higher risk for the most devastating diseases. There are a number of theories of human aging proposed, and many of them are directly or indirectly linked to mitochondria. Here, we used mesenchymal stem cells (MSCs) from young and older donors to study age-related changes in mitochondrial metabolism. We have found that aging in MSCs is associated with a decrease in mitochondrial membrane potential and lower NADH levels in mitochondria. Mitochondrial DNA content is higher in aged MSCs, but the overall mitochondrial mass is decreased due to increased rates of mitophagy. Despite the higher level of ATP in aged cells, a higher rate of ATP consumption renders them more vulnerable to energy deprivation compared to younger cells. Changes in mitochondrial metabolism in aged MSCs activate the overproduction of reactive oxygen species in mitochondria which is compensated by a higher level of the endogenous antioxidant glutathione. Thus, energy metabolism and redox state are the drivers for the aging of MSCs/mesenchymal stromal cells

    LASER-VISUAL-INERTIAL ODOMETRY BASED SOLUTION FOR 3D HERITAGE MODELING: THE SANCTUARY OF THE BLESSED VIRGIN OF TROMPONE

    Get PDF
    Abstract. The advent of new mobile mapping systems that integrate different sensors has made it easier to acquire multiple 3D information with high speed. Today, technological development has allowed the creation of portable systems particularly suitable for indoor surveys, which mainly integrating LiDAR devices, chambers and inertial platforms, make it possible to create in a fast and easy way, full 3D model of the environment. However, the performance of these instruments differs depending on the acquisition context (indoor and outdoor), the characteristics of the scene (for example lighting, the presence of objects and people, reflecting surfaces, textures) and, above all, the mapping and localization algorithms implemented in devices. The purpose of this study is to analyse the results, and their accuracy, deriving from a survey conducted with the KAARTA Stencil 2 handheld system. This instrument, composed of a 3D LiDAR Velodyne VLP-16, a MEMS inertial platform and a feature tracker camera, it is able to realize the temporal 3D map of the environment. Specifically, the acquisition tests were carried out in a context of metrical documentation of an architectural heritage, in order extract architectural detail for the future reconstruction of virtual and augmented reality environments and for Historical Building Information Modeling purposes. The achieved results were analysed and the discrepancies from some reference LiDAR data are computed for a final evaluation. The system was tested in the church and cloister of the Sanctuary of the Beata Vergine del Trompone in Moncrivello (VC) (Italy).</p

    An Application of IoT in a Drone Inspection Service for Environmental Control

    Get PDF
    This paper presents an exploratory activity with a drone inspection service for environmental control. The aim of the service is to provide technical support to decision-makers in environmental risk management. The proposed service uses IoT for the interaction between a mobile application, a Smart City platform, and an Unmanned Aircraft System (UAS). The mobile application allows the users to report risky situations, such as fire ignition, spills of pollutants in water, or illegal dumping; the user has only to specify the class of the event, while the geographical coordinates are automatically taken from device-integrated GPS. The message sent from the mobile application arrives to a Smart City platform, which shows all the received alerts on a 3D satellite map, to support decision-makers in choosing where a drone inspection is required. From the Smart City platform, the message is sent to the drone service operator; a CSV file defining the itinerary of the drone is automatically built and shown through the platform; the drone starts the mission providing a video, which is used by the decision-makers to understand whether the situation calls for immediate action. An experimental activity in an open field was carried out to validate the whole chain, from the alert to the drone mission, enriched by a Smart City platform to enable a decision-maker to better manage the situation

    Electronic Medical Record-Assisted Telephone Follow-Up of Breast Cancer Survivors During the COVID-19 Pandemic: A Single Institution Experience

    Get PDF
    PURPOSE: The COVID-19 outbreak rapidly became a public health emergency and led to radical changes in patient management. From the start of the pandemic, we used electronic medical record-assisted telephone follow-up (E-TFU) of cancer survivors (CS) to minimize hospital exposure. The aim of this prospective study was to assess how breast cancer survivors (bCSs) perceived E-TFU. MATERIALS AND METHODS: A 15-item survey was e-mailed to bCSs who had been managed with E-TFU. The responses were measured using Likert-like scales and were correlated with the main characteristics of the bCS using Pearson's test. RESULTS: One hundred thirty-seven of 343 bCSs (40%) completed the survey between March 9 and June 2, 2020. Their median age was 59 years. Although 80.3% of bCSs were satisfied with E-TFU, only 43.8% would like to have E-TFU in the future. A low educational level was correlated with higher COVID-19-related anxiety (P = .025). An older age (P = .002) and a low educational level (P &lt; .0001) were correlated with the need to be accompanied to reach the hospital. A personal history of second cancer was inversely correlated with understanding medical advice (P = .015) and the expectation of feeling relief after a follow-up visit (P = .0027). Furthermore, pandemic phase II was correlated with satisfaction with E-TFU (P = .010). CONCLUSION: E-TFU was an important means of avoiding hospital contacts during the COVID-19 pandemic, and the majority of bCSs in the survey were satisfied with this procedure. Further studies are needed to investigate the implementation of telemedicine even outside an emergency situation

    Human neuronal cell lines as an in vitro toxicological tool for the evaluation of novel psychoactive substances

    Get PDF
    Novel psychoactive substances (NPS) are synthetic substances belonging to diverse groups, designed to mimic the effects of scheduled drugs, resulting in altered toxicity and potency. Up to now, information available on the pharmacology and toxicology of these new substances is very limited, posing a considerable challenge for prevention and treatment. The present in vitro study investigated the possible mechanisms of toxicity of two emerging NPS (i) 4′-methyl-alpha-pyrrolidinoexanophenone (3,4-MDPHP), a synthetic cathinone, and (ii) 2-chloro-4,5-methylenedioxy-methamphetamine (2-Cl-4,5-MDMA), a phenethylamine. In addition, to apply our model to the class of synthetic opioids, we evaluated the toxicity of fentanyl, as a reference compound for this group of frequently abused substances. To this aim, the in vitro toxic effects of these three compounds were evaluated in dopaminergic-differentiated SH-SY5Y cells. Following 24 h of exposure, all compounds induced a loss of viability, and oxidative stress in a concentration-dependent manner. 2-Cl-4,5-MDMA activates apoptotic processes, while 3,4-MDPHP elicits cell death by necrosis. Fentanyl triggers cell death through both mechanisms. Increased expression levels of pro-apoptotic Bax and caspase 3 activity were observed following 2-Cl-4,5-MDMA and fentanyl, but not 3,4-MDPHP exposure, confirming the different modes of cell death

    LASER-VISUAL-INERTIAL ODOMETRY BASED SOLUTION for 3D HERITAGE MODELING: The SANCTUARY of the BLESSED VIRGIN of TROMPONE

    Get PDF
    The advent of new mobile mapping systems that integrate different sensors has made it easier to acquire multiple 3D information with high speed. Today, technological development has allowed the creation of portable systems particularly suitable for indoor surveys, which mainly integrating LiDAR devices, chambers and inertial platforms, make it possible to create in a fast and easy way, full 3D model of the environment. However, the performance of these instruments differs depending on the acquisition context (indoor and outdoor), the characteristics of the scene (for example lighting, the presence of objects and people, reflecting surfaces, textures) and, above all, the mapping and localization algorithms implemented in devices. The purpose of this study is to analyse the results, and their accuracy, deriving from a survey conducted with the KAARTA Stencil 2 handheld system. This instrument, composed of a 3D LiDAR Velodyne VLP-16, a MEMS inertial platform and a feature tracker camera, it is able to realize the temporal 3D map of the environment. Specifically, the acquisition tests were carried out in a context of metrical documentation of an architectural heritage, in order extract architectural detail for the future reconstruction of virtual and augmented reality environments and for Historical Building Information Modeling purposes. The achieved results were analysed and the discrepancies from some reference LiDAR data are computed for a final evaluation. The system was tested in the church and cloister of the Sanctuary of the Beata Vergine del Trompone in Moncrivello (VC) (Italy)
    corecore