313 research outputs found

    Influence of constituent properties and geometric form on behavior of woven fabric reinforced composites

    Get PDF
    Th potential for woven fabric composite forms to increase the interlaminar strength and toughness properties of laminated composite septems is studied. Experimental and analytical studies were performed on a z-axis fabric

    Behavior of composite bolted joints at elevated temperature

    Get PDF
    Experimental results from an investigation which examines the combined effects of temperature, joint geometry and out-of-plane constraint upon the response of mechanically fastened composite joints are presented. Data are presented for simulated mechanically fastened joint conditions in two laminate configurations fabricated from Hercules AS/3501-6 graphite-epoxy. Strength and failure mode results are presented for the test temperatures of 21 C, 121 C and 177 C and for a range of the geometric parameters W/D and e/D from 3.71 to 7.43 and 1.85 to 3.69, respectively. A hole diameter, D of 5.16 mm was utilized for all tests. Pin bearing tests with out-of-plane constraint were conducted at room temperature only. All elevated temperature data were generated for pin bearing conditions. Ultrasonic C scan inspection of the failed specimens was employed to assess the damage region and to determine failure mode. Comparative data are presented for pin bearing and out-of-plane constraint conditions for the above mentioned joint configurations. The joint under pin loading was modeled by two dimensional finite element methods. Predicted net section strain concentrations were compared with experimental results

    Mechanically fastened joints in woven fabric composites

    Get PDF
    Strength analysis for composite bolted joints involves the mating of a stress analysis with an appropriate mode specific failure criterion for each of the primary failure modes. The stress analysis and failure criteria are independent of each other and can be manipulated separately in order to optimize the strength analysis package formed by their coupling. Material properties tests were conducted on rubber toughened graphite-epoxy material to measure the basic strength and stiffness in the warp and fill directions and in shear. Test matrices are summarized for investigations of laminate configuration, stacking sequence, fastener diameter, edge distance, fastener half spacing, laminate thickness, and fastener torque. A three dimensional finite element analysis computer program was written and failure criteria for net tension, shearout, and bearing were determined

    X-RAY AND NUCLEAR RADIATION FACILITIES, PERSONNEL SAFETY FEATURES.

    Get PDF

    Establishing the relationship between manufacturing and component performance in stretch formed thermoplastic composites

    Get PDF
    Flexible manufacturing methods are needed to reduce the cost of using advanced composites in structural applications. One method that allows for this is the stretch forming of long discontinuous fiber materials with thermoplastic matrices. In order to exploit this flexibility in an economical way, a thorough understanding of the relationship between manufacturing and component performance must be developed. This paper reviews some of the recent work geared toward establishing this understanding. Micromechanics models have been developed to predict the formability of the material during processing. The latest improvement of these models includes the viscoelastic nature of the matrix and comparison with experimental data. A finite element scheme is described which can be used to model the forming process. This model uses equivalent anisotropic viscosities from the micromechanics models and predicts the microstructure in the formed part. In addition, structural models have been built to account for the material property gradients that can result from the manufacturing procedures. Recent developments in this area include the analysis of stress concentrations and a failure model each accounting for the heterogeneous material fields

    The band-gap structure and the singular character of the bounded large array of potential barriers

    Full text link
    The bounded one dimensional multibarrier potential shows signs of chaos, phase transition and a transmission probability of unity for certain values of its total length LL and the ratio cc of total interval to total width. Like the infinite Kronig-Penney system, which is arranged along the whole spatial region, the bounded multibarrier potential has a band-gap structure in its energy spectrum. But unlike the Kronig-Penney system, in which the gaps disappear for large energies, these gaps do not disappear for certain values of LL and cc. The energy is discontinuous even in parts of the spectrum with no gaps at all. These results imply that the energy spectrum of the bounded multibarrier system is singular.Comment: 22 pages, 7 PS figures, former text removed and a new one inserte

    Maxwell Model of Traffic Flows

    Full text link
    We investigate traffic flows using the kinetic Boltzmann equations with a Maxwell collision integral. This approach allows analytical determination of the transient behavior and the size distributions. The relaxation of the car and cluster velocity distributions towards steady state is characterized by a wide range of velocity dependent relaxation scales, R1/2<τ(v)<RR^{1/2}<\tau(v)<R, with RR the ratio of the passing and the collision rates. Furthermore, these relaxation time scales decrease with the velocity, with the smallest scale corresponding to the decay of the overall density. The steady state cluster size distribution follows an unusual scaling form Pm∼−4Ψ(m/<m>2)P_m \sim ^{-4} \Psi(m/< m>^2). This distribution is primarily algebraic, Pm∼m−3/2P_m\sim m^{-3/2}, for m≪2m\ll ^2, and is exponential otherwise.Comment: revtex, 10 page

    Surface Fractal Dimension of Single-walled Carbon Nanotubes

    Get PDF
    Isolated single-walled carbon nanotubes (SWNTs), SWNT bundles, and ropes (or strands) show a structural self-similar characteristic. By calculating the Hausdorff dimension, it was found that their self-similar organization leads to surface fractality and the value of the surface dimension (Ds) depends on self-similar patterns. Experimentally, Ds obtained by nitrogen adsorption measurements at 77.3 K and by the small-angle x-ray scattering technique in our study proved our calculation that the surface dimension of SWNTs is nonintegral,

    Synergistic Activation of Cardiac Genes by Myocardin and Tbx5

    Get PDF
    Myocardial differentiation is associated with the activation and expression of an array of cardiac specific genes. However, the transcriptional networks that control cardiac gene expression are not completely understood. Myocardin is a cardiac and smooth muscle-specific expressed transcriptional coactivator of Serum Response Factor (SRF) and is able to potently activate cardiac and smooth muscle gene expression during development. We hypothesize that myocardin discriminates between cardiac and smooth muscle specific genes by associating with distinct co-factors. Here, we show that myocardin directly interacts with Tbx5, a member of the T-box family of transcription factors involved in the Holt-Oram syndrome. Tbx5 synergizes with myocardin to activate expression of the cardiac specific genes atrial natriuretic factor (ANF) and alpha myosin heavy chain (α-MHC), but not that of smooth muscle specific genes SM22 or smooth muscle myosin heavy chain (SM-MHC). We found that this synergistic activation of shared target genes is dependent on the binding sites for Tbx5, T-box factor-Binding Elements (TBEs). Myocardin and Tbx5 physically interact and their interaction domains were mapped to the basic domain and the coil domain of myocardin and Tbx5, respectively. Our analysis demonstrates that the Tbx5G80R mutation, which leads to the Holt-Oram syndrome in humans, failed to synergize with myocardin to activate cardiac gene expression. These data uncover a key role for Tbx5 and myocardin in establishing the transcriptional foundation for cardiac gene activation and suggest that the interaction of myocardin and Tbx5 maybe involved in cardiac development and diseases
    • …
    corecore