research

Behavior of composite bolted joints at elevated temperature

Abstract

Experimental results from an investigation which examines the combined effects of temperature, joint geometry and out-of-plane constraint upon the response of mechanically fastened composite joints are presented. Data are presented for simulated mechanically fastened joint conditions in two laminate configurations fabricated from Hercules AS/3501-6 graphite-epoxy. Strength and failure mode results are presented for the test temperatures of 21 C, 121 C and 177 C and for a range of the geometric parameters W/D and e/D from 3.71 to 7.43 and 1.85 to 3.69, respectively. A hole diameter, D of 5.16 mm was utilized for all tests. Pin bearing tests with out-of-plane constraint were conducted at room temperature only. All elevated temperature data were generated for pin bearing conditions. Ultrasonic C scan inspection of the failed specimens was employed to assess the damage region and to determine failure mode. Comparative data are presented for pin bearing and out-of-plane constraint conditions for the above mentioned joint configurations. The joint under pin loading was modeled by two dimensional finite element methods. Predicted net section strain concentrations were compared with experimental results

    Similar works