697 research outputs found

    A Directly-Written Monolithic Waveguide-Laser Incorporating a DFB Waveguide-Bragg Grating

    Full text link
    We report the fabrication and performance of the first C-band directly-written monolithic waveguide-laser. The waveguide-laser device was created in an Erbium and Ytterbium doped phosphate glass host and consisted of an optical waveguide that included a distributed feedback Bragg grating structure. The femtosecond laser direct-write technique was used to create both the waveguide and the waveguide-Bragg grating simultaneously and in a single processing step. The waveguide-laser was optically pumped at approximately 980 nm and lased at 1537nm with a bandwidth of less than 4 pm.Comment: 6 pages, 13 references, 4 figure

    Effects of Smoking and Cessation on Subclinical Arterial Disease: A Substudy of a Randomized Controlled Trial

    Get PDF
    The mechanisms by which smoking cessation reduces cardiovascular disease risk are unclear. We evaluated longitudinal changes in carotid intima-media thickness among current smokers enrolled in a prospective, randomized smoking cessation clinical trial.Subjects were enrolled in a randomized, double-blind, placebo-controlled trial of 5 smoking cessation pharmacotherapies and underwent carotid ultrasonography with carotid intima-media thickness measurement. Subjects were classified as continuously abstinent (biochemically confirmed abstinence at 6 months, 1 year, and 3 years post-quit attempt), intermittently abstinent (reported smoking at one of the three time points), or smoked continuously (reported smoking at all three time points). The primary endpoint was the absolute change (mm) in carotid intima-media thickness (ΔCIMT(max)) before randomization and 3 years after the target quit date. Pearson correlations were calculated and multivariable regression models (controlling for baseline CIMT(max) and research site) were analyzed. Among 795 subjects (45.2 ± 10.6 years old, 58.5% female), 189 (23.8%) were continuously abstinent, 373 (46.9%) smoked continuously, and 233 (29.3%) were abstinent intermittently. There was a greater increase in carotid intima-media thickness among subjects who were continuously abstinent than among those who smoked continuously (p = 0.020), but not intermittently (p = 0.310). Antihypertensive medication use (p = 0.001) and research site (p<0.001) independently predicted ΔCIMTmax--not smoking status. The greatest increase in carotid intima-media thickness among continuous abstainers was related to increases in body-mass index (p = 0.043).Smoking status did not independently predict ΔCIMT(max); increasing body-mass index and antihypertensive medication use were the most important independent predictors. The rapid reduction in cardiovascular disease events observed with smoking cessation is unlikely to be mediated by changes in subclinical atherosclerosis burden.ClinicalTrials.gov NCT00332644

    Laser Capture and Deep Sequencing Reveals the Transcriptomic Programmes Regulating the Onset of Pancreas and Liver Differentiation in Human Embryos.

    Get PDF
    To interrogate the alternative fates of pancreas and liver in the earliest stages of human organogenesis, we developed laser capture, RNA amplification, and computational analysis of deep sequencing. Pancreas-enriched gene expression was less conserved between human and mouse than for liver. The dorsal pancreatic bud was enriched for components of Notch, Wnt, BMP, and FGF signaling, almost all genes known to cause pancreatic agenesis or hypoplasia, and over 30 unexplored transcription factors. SOX9 and RORA were imputed as key regulators in pancreas compared with EP300, HNF4A, and FOXA family members in liver. Analyses implied that current in vitro human stem cell differentiation follows a dorsal rather than a ventral pancreatic program and pointed to additional factors for hepatic differentiation. In summary, we provide the transcriptional codes regulating the start of human liver and pancreas development to facilitate stem cell research and clinical interpretation without inter-species extrapolation.This project received support from the UK Medical Research Council (MRC) (R.E.J. was a clinical research training fellow; additional funding from MR/L009986/1 to N.B. and N.A.H.; and MR/J003352/1 to K.P.H.), the Academy of Medical Sciences (supported by Wellcome Trust, MRC, British Heart Foundation, Arthritis Research UK, the Royal College of Physicians and Diabetes UK) (R.E.J.), the Society for Endocrinology (R.E.J.), the Wellcome Trust (N.A.H. was a senior fellow in clinical science, 088566; additional support from grant 105610/Z/14/Z), and the British Council and JDRF (14BX15NHBG to N.A.H.)

    Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals

    Get PDF
    The ultimate frontier in nanomaterials engineering is to realize their composition control with atomic scale precision to enable fabrication of nanoparticles with desirable size, shape and surface properties. Such control becomes even more useful when growing hybrid nanocrystals designed to integrate multiple functionalities. Here we report achieving such degree of control in a family of rare-earth-doped nanomaterials. We experimentally verify the co-existence and different roles of oleate anions (OA-) and molecules (OAH) in the crystal formation. We identify that the control over the ratio of OA- to OAH can be used to directionally inhibit, promote or etch the crystallographic facets of the nanoparticles. This control enables selective grafting of shells with complex morphologies grown over nanocrystal cores, thus allowing the fabrication of a diverse library of monodisperse sub-50 nm nanoparticles. With such programmable additive and subtractive engineering a variety of three-dimensional shapes can be implemented using a bottom-up scalable approach

    An audio personal health library of clinic visit recordings for patients and their caregivers (HealthPAL): User-centered design approach

    Get PDF
    Background: Providing digital recordings of clinic visits to patients has emerged as a strategy to promote patient and family engagement in care. With advances in natural language processing, an opportunity exists to maximize the value of visit recordings for patients by automatically tagging key visit information (eg, medications, tests, and imaging) and linkages to trustworthy web-based resources curated in an audio-based personal health library. Objective: This study aims to report on the user-centered development of HealthPAL, an audio personal health library. Methods: Our user-centered design and usability evaluation approach incorporated iterative rounds of video-recorded sessions from 2016 to 2019. We recruited participants from a range of community settings to represent older patient and caregiver perspectives. In the first round, we used paper prototypes and focused on feature envisionment. We moved to low-fidelity and high-fidelity versions of the HealthPAL in later rounds, which focused on functionality and use; all sessions included a debriefing interview. Participants listened to a deidentified, standardized primary care visit recording before completing a series of tasks (eg, finding where a medication was discussed in the recording). In the final round, we recorded the patients\u27 primary care clinic visits for use in the session. Findings from each round informed the agile software development process. Task completion and critical incidents were recorded in each round, and the System Usability Scale was completed by participants using the digital prototype in later rounds. Results: We completed 5 rounds of usability sessions with 40 participants, of whom 25 (63%) were women with a median age of 68 years (range 23-89). Feedback from sessions resulted in color-coding and highlighting of information tags, a more prominent play button, clearer structure to move between one\u27s own recordings and others\u27 recordings, the ability to filter recording content by the topic discussed and descriptions, 10-second forward and rewind controls, and a help link and search bar. Perceived usability increased over the rounds, with a median System Usability Scale of 78.2 (range 20-100) in the final round. Participants were overwhelmingly positive about the concept of accessing a curated audio recording of a clinic visit. Some participants reported concerns about privacy and the computer-based skills necessary to access recordings. Conclusions: To our knowledge, HealthPAL is the first patient-centered app designed to allow patients and their caregivers to access easy-to-navigate recordings of clinic visits, with key concepts tagged and hyperlinks to further information provided. The HealthPAL user interface has been rigorously co-designed with older adult patients and their caregivers and is now ready for further field testing. The successful development and use of HealthPAL may help improve the ability of patients to manage their own care, especially older adult patients who have to navigate complex treatment plans

    Modelling of a new X-ray backscatter imaging system: simulation investigation

    Get PDF
    X-ray backscatter imaging is a powerful technique for medical, aerospace, and security applications. Conventionally, a pinhole is commonly used for focusing x-ray, but there is always a desire to enhance the signal-to-noise-ratio (SNR) and optical throughput compared to a single pinhole. The main aim of this paper is to present a new x-ray backscatter imaging system which was inspired by a Twisted Slit collimator system called the Vortex Collimator and compare the optical throughput and the imaging performance with that of the Twisted Slit' collimator1,2 and the Pinhole imaging systems for axial point sources, where the pinhole system was used purely for comparison purposes. All the comparisons were performed through Ray tracing (Trace-Pro) simulation software. This work shows that the Vortex design yields ~4% higher SNR/optical throughput than that of the Twisted Slit collimator, and ~42.5% higher transmittance. Furthermore, the opening of the Vortex Collimator was increased and reduced to observe the performance, resulting in about ~1% transmittance increment when the opening was increased. Also, thicknesses of the Vortex Collimator and Twisted Slit collimator were increased and reduced and found that reducing the thickness seems to increase the system's throughput marginally

    Does hypoglycemia following a glucose challenge test identify a high risk pregnancy?

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>An association between maternal hypoglycemia during pregnancy with fetal growth restriction and overall perinatal mortality has been reported. In a retrospective pilot study we found that hypoglycemia was linked with a greater number of special care/neonatal intensive care unit admissions and approached significance in the number of women who developed preeclampsia. That study was limited by its retrospective design, a narrow patient population and the inability to perform multivariate analysis because of the limitations in the data points collected. This study was undertaken to compare the perinatal outcome in pregnancies with hyoglycemia following a glucose challenge test (GCT) to pregnancies with a normal GCT.</p> <p>Methods</p> <p>Obstetric patients (not pre-gestational diabetics or gestational diabetes before 24 weeks were eligible. Women with a 1 hour glucose ≤ 88 mg/dL (4.8 m/mol) following a 50-gram oral GCT were matched with the next patient with a 1 hour glucose of 89–139 mg/dL. Pregnancy outcomes were evaluated.</p> <p>Results</p> <p>Over 22 months, 436 hypoglycemic patients and 434 normal subjects were identified. Hypoglycemia was increased in women < 25 (p = 0.003) and with pre-existing medical conditions (p < 0.001). Hypoglycemia was decreased if pre-pregnancy BMI ≥ 30 (p = 0.008).</p> <p>Preeclampsia/eclampsia was more common in hypoglycemic women. (OR = 3.13, 95% CI 1.51 – 6.51, p = 0.002) but not other intrapartum and perinatal outcomes.</p> <p>Conclusion</p> <p>Hypoglycemic patients are younger, have reduced pre-pregnancy weight, lower BMIs, and are more likely to develop preeclampsia than normoglycemic women.</p

    Influences on achieving motor milestones: A twin-singleton study

    Get PDF
    In order to determine if twinning impacted achievement of motor milestones the attainment of early motor milestones in twins was examined and compared to published data from singletons of the same age from the same culture and birth years. We examined the influence of twinning, sex, zygosity and birth cohort (1987-2001) on the motor development of twins aged 0 to 24 months. Data on the attainment of motor milestones (turn, sit, crawl, stand and walk) of twins were collected from maternal reports. All data were corrected for gestational age. Data from the twin sample were compared to normative data from singletons, which were available from Child Health Clinics (CHC). Analyses across twin data and the CHC singleton data revealed no differences between twins and singletons in achievement of motor milestones. Girls were able to sit without support slightly earlier than boys, otherwise there were no other sex differences. Birth-order analyses revealed minimal but significant differences in turning over from back to belly and for sitting without support between the first- and second-born. Dizygotic (DZ) twins were faster than monozygotic (MZ) twins in achieving the moment of sit, crawl, stand and walk. Twins born in earlier cohorts were faster in reaching the moment of crawl, sit and walk. It is concluded that there are no differences in time of reaching motor milestones between twins and singletons within the normal range. Sex has minimal to no effect on motor development in early childhood. DZ twins achieve motor milestones sooner than MZ twins. Attainment of gross motor milestones (crawl, stand and walk) is delayed in later birth cohorts

    Restoring Pre-Industrial CO\u3csub\u3e2\u3c/sub\u3e Levels While Achieving Sustainable Development Goals

    Get PDF
    © 2020 by the authors. Unless humanity achieves United Nations Sustainable Development Goals (SDGs) by 2030 and restores the relatively stable climate of pre-industrial CO2 levels (as early as 2140), species extinctions, starvation, drought/floods, and violence will exacerbate mass migrations. This paper presents conceptual designs and techno-economic analyses to calculate sustainable limits for growing high-protein seafood and macroalgae-for-biofuel. We review the availability of wet solid waste and outline the mass balance of carbon and plant nutrients passing through a hydrothermal liquefaction process. The paper reviews the availability of dry solid waste and dry biomass for bioenergy with CO2 capture and storage (BECCS) while generating Allam Cycle electricity. Sufficient wet-waste biomass supports quickly building hydrothermal liquefaction facilities. Macroalgae-for-biofuel technology can be developed and straightforwardly implemented on SDG-achieving high protein seafood infrastructure. The analyses indicate a potential for (1) 0.5 billion tonnes/yr of seafood; (2) 20 million barrels/day of biofuel from solid waste; (3) more biocrude oil from macroalgae than current fossil oil; and (4) sequestration of 28 to 38 billion tonnes/yr of bio-CO2. Carbon dioxide removal (CDR) costs are between 25–33% of those for BECCS with pre-2019 technology or the projected cost of air-capture CDR
    corecore