101 research outputs found

    Zero Temperature Phase Transition in Spin-ladders: Phase Diagram and Dynamical studies of Cu(Hp)Cl

    Full text link
    In a magnetic field, spin-ladders undergo two zero-temperature phase transitions at the critical fields Hc1 and Hc2. An experimental review of static and dynamical properties of spin-ladders close to these critical points is presented. The scaling functions, universal to all quantum critical points in one-dimension, are extracted from (a) the thermodynamic quantities (magnetization) and (b) the dynamical functions (NMR relaxation). A simple mapping of strongly coupled spin ladders in a magnetic field on the exactly solvable XXZ model enables to make detailed fits and gives an overall understanding of a broad class of quantum magnets in their gapless phase (between Hc1 and Hc2). In this phase, the low temperature divergence of the NMR relaxation demonstrates its Luttinger liquid nature as well as the novel quantum critical regime at higher temperature. The general behaviour close these quantum critical points can be tied to known models of quantum magnetism.Comment: few corrections made, 15 pages, to be published in European Journal of Physics

    Anisotropy of Magnetic Interactions in the Spin-Ladder Compound (C5_5H12_{12}N)2_2CuBr4_4

    Full text link
    Magnetic excitations in the spin-ladder material (C5_5H12_{12}N)2_2CuBr4_4 [BPCB] are probed by high-resolution multi-frequency electron spin resonance (ESR) spectroscopy. Our experiments provide a direct evidence for a biaxial anisotropy (∼5%\sim 5\% of the dominant exchange interaction), that is in contrast to a fully isotropic spin-ladder model employed for this system previously. It is argued that this anisotropy in BPCB is caused by spin-orbit coupling, which appears to be important for describing magnetic properties of this compound. The zero-field zone-center gap in the excitation spectrum of BPCB, Δ0/kB=16.5\Delta_0/k_{B}=16.5 K, is detected directly. Furthermore, an ESR signature of the inter-ladder exchange interactions is obtained. The detailed characterization of the anisotropy in BPCB completes the determination of the full spin hamiltonian of this exceptional spin-ladder material and shows ways to study anisotropy effects in spin ladders.Comment: 6 pages, 6 figure

    The LRRK2 G2385R variant is a partial loss-of-function mutation that affects synaptic vesicle trafficking through altered protein interactions.

    Get PDF
    Mutations in the Leucine-rich repeat kinase 2 gene (LRRK2) are associated with familial Parkinson's disease (PD). LRRK2 protein contains several functional domains, including protein-protein interaction domains at its N- and C-termini. In this study, we analyzed the functional features attributed to LRRK2 by its N- and C-terminal domains. We combined TIRF microscopy and synaptopHluorin assay to visualize synaptic vesicle trafficking. We found that N- and C-terminal domains have opposite impact on synaptic vesicle dynamics. Biochemical analysis demonstrated that different proteins are bound at the two extremities, namely \u3b23-Cav2.1 at N-terminus part and \u3b2-Actin and Synapsin I at C-terminus domain. A sequence variant (G2385R) harboured within the C-terminal WD40 domain increases the risk for PD. Complementary biochemical and imaging approaches revealed that the G2385R variant alters strength and quality of LRRK2 interactions and increases fusion of synaptic vesicles. Our data suggest that the G2385R variant behaves like a loss-of-function mutation that mimics activity-driven events. Impaired scaffolding capabilities of mutant LRRK2 resulting in perturbed vesicular trafficking may arise as a common pathophysiological denominator through which different LRRK2 pathological mutations cause diseas

    Identification of Nuclear Relaxation Processes in a Gapped Quantum Magnet: Proton NMR in the S=1/2 Heisenberg Ladder Cu2(C5H12N2)2Cl4

    Full text link
    The proton hyperfine shift K and NMR relaxation rate 1/T11/T_1 have been measured as a function of temperature in the S=1/2 Heisenberg antiferromagnetic ladder Cu2(C5H12N2)2Cl4. The presence of a spin gap Δ≃J⊥−J∥\Delta \simeq J_\perp-J_\parallel in this strongly coupled ladder (J∥<J⊥J_\parallel < J_\perp) is supported by the K and 1/T11/T_1 results. By comparing 1/T11/T_1 at two different proton sites, we infer the evolution of the spectral functions Sz(q,ωn)S_z(q,\omega_n) and S⊥(q,ωn)S_\perp(q,\omega_n). When the gap is significantly reduced by the magnetic field, two different channels of nuclear relaxation, specific to gapped antiferromagnets, are identified and are in agreement with theoretical predictions.Comment: 4 pages, 4 figures, to be published in Phys. Rev. Letter

    NMR study of the S=1/2 Heisenberg Ladder Cu2(C5H12N2)2Cl4 : Quantum phase transition and critical dynamics

    Full text link
    We present an extensive NMR study of the spin-1/2 antiferromagnetic Heisenberg ladder Cu2(C5H12N2)2Cl4 in a magnetic field range 4.5 - 16.7 T. By measuring the proton NMR relaxation rate 1/T_1 and varying the magnetic field around the critical field H_c1 = Delta / g\mu_B = 7.5 T, we have studied the transition from a gapped spin liquid ground state to a gapless magnetic regime which can be described as a Luttinger liquid. We identify an intermediate regime T > |H-H_c1|, where the spin dynamics is (possibly) only controlled by the T=0 critical point H_c1.Comment: 4 pages, 3 eps figures, submitted to Phys. Rev. Let

    A point mutation in the kinase domain of CRK10 leads to xylem vessel collapse and activation of defence responses in Arabidopsis

    Get PDF
    Cysteine-rich receptor-like kinases (CRKs) are a large family of plasma membrane-bound receptors ubiquitous in higher plants. However, despite their prominence, their biological roles have remained largely elusive so far. In this study we report the characterization of an Arabidopsis mutant named crk10-A397T in which alanine 397 has been replaced by a threonine in the αC helix of the kinase domain of CRK10, known to be a crucial regulatory module in mammalian kinases. The crk10-A397T mutant is a dwarf that displays collapsed xylem vessels in the root and hypocotyl, whereas the vasculature of the inflorescence develops normally. In situ phosphorylation assays with His-tagged wild type and crk10-A397T versions of the CRK10 kinase domain revealed that both alleles are active kinases capable of autophosphorylation, with the newly introduced threonine acting as an additional phosphorylation site in crk10-A397T. Transcriptomic analysis of wild type and crk10-A397T mutant hypocotyls revealed that biotic and abiotic stress-responsive genes are constitutively up-regulated in the mutant, and a root-infection assay with the vascular pathogen Fusarium oxysporum demonstrated that the mutant has enhanced resistance to this pathogen compared with wild type plants. Taken together our results suggest that crk10-A397T is a gain-of-function allele of CRK10, the first such mutant to have been identified for a CRK in Arabidopsis
    • …
    corecore