1,382 research outputs found

    Can apps support creativity in middle childhood?

    Get PDF
    This experimental study investigated whether and how creative apps may support creativity in middle childhood (n = 94 children, 8–10 years old). Guided by the moderate discrepancy hypothesis, flow theory, and the differential susceptibility to media effects model, developmentally-appropriate creative apps were predicted to increase engagement and subsequent creativity to a greater extent than developmentally-inappropriate creative apps. Furthermore, gender and fantastical thinking were predicted to moderate effects. Results provided partial support for study hypotheses. Children were more engaged when playing developmentally-appropriate apps, however, this engagement did not translate into creativity gains. Given that the data failed to support study hypotheses, post hoc analyses were conducted to explore the findings in greater detail. These additional analyses indicated that developmentally-appropriate apps not only lead to greater engagement, but were subsequently more appealing as well. These post hoc findings are discussed within the context of the study design, particularly noting that greater duration of play may be necessary to move the needle on creative skills. Empirical and practical implications are discussed

    Fixed points of nonnegative neural networks

    Full text link
    We consider the existence of fixed points of nonnegative neural networks, i.e., neural networks that take as an input and produce as an output nonnegative vectors. We first show that nonnegative neural networks with nonnegative weights and biases can be recognized as monotonic and (weakly) scalable functions within the framework of nonlinear Perron-Frobenius theory. This fact enables us to provide conditions for the existence of fixed points of nonnegative neural networks, and these conditions are weaker than those obtained recently using arguments in convex analysis. Furthermore, we prove that the shape of the fixed point set of nonnegative neural networks with nonnegative weights and biases is an interval, which under mild conditions degenerates to a point. These results are then used to obtain the existence of fixed points of more general types of nonnegative neural networks. The results of this paper contribute to the understanding of the behavior of autoencoders, and they provide insight into neural networks designed using the loop-unrolling technique, which can be seen as a fixed point searching algorithm. The chief theoretical results of this paper are verified in numerical simulations.Comment: 34 page

    Advection and scavenging controls of Pa/Th in the northern NE Atlantic

    Get PDF
    Over the last 2 decades, significant advances have been made in reconstructing past rates of ocean circulation using sedimentary proxies for the dynamics of abyssal waters. In this study we combine the use of two rate proxies, sortable silt grain size, and sedimentary ²³¹Pa/²³⁰Th, measured on a depth transect of deep-sea sediment cores from the northern NE Atlantic, to investigate ocean circulation changes during the last deglacial. We find that at two deep sites, the core-top ²³¹Pa/²³⁰Th ratios reflect Holocene circulation rates, while during Heinrich Stadial 1, the deglacial ratios peaked as the sortable silt grain size decreased, reflecting a general circulation slowdown. However, the peak ²³¹Pa/²³⁰Th significantly exceeded the production ratio in both cores, indicating that ²³¹Pa/²³⁰Th was only partially controlled by ocean circulation at these sites. This is supported by a record of ²³¹Pa/²³⁰Th from an intermediate water depth site, where values also peaked during Heinrich Stadial 1, but were consistently above the production ratio over the last 24 ka, reflecting high scavenging below productive surface waters. At our study sites, we find that preserved sediment component fluxes cannot be used to distinguish between a scavenging or circulation control, although they are consistent with a circulation influence, since the core at intermediate depth with the highest ²³¹Pa/²³⁰Th recorded the lowest particle fluxes. Reconstruction of advection rate using ²³¹Pa/²³⁰Th in this region is complicated by high productivity, but the data nevertheless contain important information on past deep ocean circulation
    corecore