16 research outputs found

    Differential calculus on the quantum Heisenberg group

    Full text link
    The differential calculus on the quantum Heisenberg group is conlinebreak structed. The duality between quantum Heisenberg group and algebra is proved.Comment: AMSTeX, Pages

    Insanity as a Defense to the Civil Fraud Penalty

    Get PDF
    Most neurological diseases are associated with chronic inflammation initiated by the activation of microglia, which produce cytotoxic and inflammatory factors. Signal transducers and activators of transcription (STATs) are potent regulators of gene expression but contribution of particular STAT to inflammatory gene expression and STAT-dependent transcriptional networks underlying brain inflammation need to be identified. In the present study, we investigated the genomic distribution of Stat binding sites and the role of Stats in the gene expression in lipopolysaccharide (LPS)-activated primary microglial cultures. Integration of chromatin immunoprecipitation-promoter microarray data and transcriptome data revealed novel Stat-target genes including Jmjd3, Ccl5, Ezr, Ifih1, Irf7, Uba7, and Pim1. While knockdown of individual Stat had little effect on the expression of tested genes, knockdown of both Stat1 and Stat3 inhibited the expression of Jmjd3 and inflammatory genes. Transcriptional regulation of Jmjd3 by Stat1 and Stat3 is a novel mechanism crucial for launching inflammatory responses in microglia. The effects of Jmjd3 on inflammatory gene expression were independent of its H3K27me3 demethylase activity. Forced expression of constitutively activated Stat1 and Stat3 induced the expression of Jmjd3, inflammation-related genes, and the production of proinflammatory cytokines as potently as lipopolysacharide. Gene set enrichment and gene function analysis revealed categories linked to the inflammatory response in LPS and Stat1C + Stat3C groups. We defined upstream pathways that activate STATs in response to LPS and demonstrated contribution of Tlr4 and Il-6 and interferon-. signaling. Our findings define novel direct transcriptional targets of Stat1 and Stat3 and highlight their contribution to inflammatory gene expression

    Novel molecular players of X chromosome inactivation: new technologies and new insights

    No full text
    The dosage compensation in placental mammals is achieved by silencing of one copy of the X chromosomes in a female cell by a process called X chromosome inactivation (XCI). XCI ensures equal gene dosage for X-linked genes between the two genders. Although the choice of X chromosome to be silenced is random, once the silencing of the X chromosome has been established, this process is highly regulated and maintained throughout subsequent cell divisions. A long non-coding RNA, Xist, and its interacting proteins execute this multistep process, but several of these regulatory proteins remain unidentified. Recent technological advances based on the genetic and proteomics screening have identified several new regulatory factors as well as dissected the molecular details of XCI regulation. Moreover, identification of regulators of XCI offers an opportunity to explore reactivation of the inactive X chromosome (Xi) as a potential therapeutic strategy to treat X-linked diseases, like Rett syndrome. Here, we summarize recent reports that identified new regulatory proteins and RNA species playing a crucial role in Xist localization and spreading, recruitment of silencing machinery to the Xi, Xist interaction with chromatin, and structural organization of the Xi in the nuclei

    The signal transducers Stat1 and Stat3 and their novel target Jmjd3 drive the expression of inflammatory genes in microglia

    No full text
    Most neurological diseases are associated with chronic inflammation initiated by the activation of microglia, which produce cytotoxic and inflammatory factors. Signal transducers and activators of transcription (STATs) are potent regulators of gene expression but contribution of particular STAT to inflammatory gene expression and STAT-dependent transcriptional networks underlying brain inflammation need to be identified. In the present study, we investigated the genomic distribution of Stat binding sites and the role of Stats in the gene expression in lipopolysaccharide (LPS)-activated primary microglial cultures. Integration of chromatin immunoprecipitation-promoter microarray data and transcriptome data revealed novel Stat-target genes including Jmjd3, Ccl5, Ezr, Ifih1, Irf7, Uba7, and Pim1. While knockdown of individual Stat had little effect on the expression of tested genes, knockdown of both Stat1 and Stat3 inhibited the expression of Jmjd3 and inflammatory genes. Transcriptional regulation of Jmjd3 by Stat1 and Stat3 is a novel mechanism crucial for launching inflammatory responses in microglia. The effects of Jmjd3 on inflammatory gene expression were independent of its H3K27me3 demethylase activity. Forced expression of constitutively activated Stat1 and Stat3 induced the expression of Jmjd3, inflammation-related genes, and the production of proinflammatory cytokines as potently as lipopolysacharide. Gene set enrichment and gene function analysis revealed categories linked to the inflammatory response in LPS and Stat1C + Stat3C groups. We defined upstream pathways that activate STATs in response to LPS and demonstrated contribution of Tlr4 and Il-6 and interferon-. signaling. Our findings define novel direct transcriptional targets of Stat1 and Stat3 and highlight their contribution to inflammatory gene expression

    miR‐206 family is important for mitochondrial and muscle function, but not essential for myogenesis in vitro

    No full text
    miR-206, miR-1a-1, and miR-1a-2 are induced during differentiation of skeletal myoblasts and promote myogenesis in vitro. miR-206 is required for skeletal muscle regeneration in vivo. Although this miRNA family is hypothesized to play an essential role in differentiation, a triple knock-out (tKO) of the three genes has not been done to test this hypothesis. We report that tKO C2C12 myoblasts generated using CRISPR/Cas9 method differentiate despite the expected derepression of the miRNA targets. Surprisingly, their mitochondrial function is diminished. tKO mice demonstrate partial embryonic lethality, most likely due to the role of miR-1a in cardiac muscle differentiation. Two tKO mice survive and grow normally to adulthood with smaller myofiber diameter, diminished physical performance, and an increase in PAX7 positive satellite cells. Thus, unlike other miRNAs important in other differentiation pathways, the miR-206 family is not absolutely essential for myogenesis and is instead a modulator of optimal differentiation of skeletal myoblasts
    corecore