5 research outputs found

    SARS-CoV-2 Wastewater Genomic Surveillance: Approaches, Challenges, and Opportunities

    Full text link
    During the SARS-CoV-2 pandemic, wastewater-based genomic surveillance (WWGS) emerged as an efficient viral surveillance tool that takes into account asymptomatic cases and can identify known and novel mutations and offers the opportunity to assign known virus lineages based on the detected mutations profiles. WWGS can also hint towards novel or cryptic lineages, but it is difficult to clearly identify and define novel lineages from wastewater (WW) alone. While WWGS has significant advantages in monitoring SARS-CoV-2 viral spread, technical challenges remain, including poor sequencing coverage and quality due to viral RNA degradation. As a result, the viral RNAs in wastewater have low concentrations and are often fragmented, making sequencing difficult. WWGS analysis requires advanced computational tools that are yet to be developed and benchmarked. The existing bioinformatics tools used to analyze wastewater sequencing data are often based on previously developed methods for quantifying the expression of transcripts or viral diversity. Those methods were not developed for wastewater sequencing data specifically, and are not optimized to address unique challenges associated with wastewater. While specialized tools for analysis of wastewater sequencing data have also been developed recently, it remains to be seen how they will perform given the ongoing evolution of SARS-CoV-2 and the decline in testing and patient-based genomic surveillance. Here, we discuss opportunities and challenges associated with WWGS, including sample preparation, sequencing technology, and bioinformatics methods.Comment: V Munteanu and M Saldana contributed equally to this work A Smith and S Mangul jointly supervised this work For correspondence: [email protected]

    Protein tyrosine phosphatases expression during development of mouse superior colliculus

    Get PDF
    Protein tyrosine phosphatases (PTPs) are key regulators of different processes during development of the central nervous system. However, expression patterns and potential roles of PTPs in the developing superior colliculus remain poorly investigated. In this study, a degenerate primer-based reverse transcription-polymerase chain reaction (RT-PCR) approach was used to isolate seven different intracellular PTPs and nine different receptor-type PTPs (RPTPs) from embryonic E15 mouse superior colliculus. Subsequently, the expression patterns of 11 PTPs (TC-PTP, PTP1C, PTP1D, PTP-MEG2, PTP-PEST, RPTPJ, RPTPΔ, RPTPRR, RPTPσ, RPTPÎș and RPTPÎł) were further analyzed in detail in superior colliculus from embryonic E13 to postnatal P20 stages by quantitative real-time RT-PCR, Western blotting and immunohistochemistry. Each of the 11 PTPs exhibits distinct spatiotemporal regulation of mRNAs and proteins in the developing superior colliculus suggesting their versatile roles in genesis of neuronal and glial cells and retinocollicular topographic mapping. At E13, additional double-immunohistochemical analysis revealed the expression of PTPs in collicular nestin-positive neural progenitor cells and RC-2-immunoreactive radial glia cells, indicating the potential functional importance of PTPs in neurogenesis and gliogenesis

    Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo

    No full text
    International audienceIntermediate-mass black holes (IMBHs) span the approximate mass range 100−105 M⊙, between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∌150 M⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200 M⊙ and effective aligned spin 0.8 at 0.056 Gpc−3 yr−1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc−3 yr−1.Key words: gravitational waves / stars: black holes / black hole physicsCorresponding author: W. Del Pozzo, e-mail: [email protected]† Deceased, August 2020
    corecore