15 research outputs found

    Complementary Use of Magnetometric Measurements for Geochemical Investigation of Light REE Concentration in Anthropogenically Polluted Soils

    No full text
    The purpose of this study was to use fast geophysical measurements of soil magnetic susceptibility (κ) as supplementary data for chemical measurements of selected light rare earth elements (REEs) in soil. In order to ensure diversity in soil conditions, anthropogenic conditions and types of land use, seven areas were selected, all located in regions subjected to past or present industrial pollution. Magnetometric parameters were measured using a selected magnetic sensor that was specially designed for measurements of soil cores and were used to classify collected soil cores into six distinctive types. The analysis of REEs concentrations in soil was carried out taking into account the grouping of collected soil samples based on the type of study area (open, forested and mountain), and additionally on the measured magnetometric parameters of collected soil cores. A use of magnetometric measurements provided different, but complementary to chemical measurements information, which allowed to obtain deeper insight on REEs concentrations in soils in studied areas

    Comparative analysis of soil magnetic susceptibility and concentration of rare earth elements in soil of problematic areas

    No full text
    Soil contamination with rare earth metals (REE) can have both direct and indirect connection with industrial activity and ore-exploration. In the studies conducted so far, the presence of rare earth elements in coal seams, coal combustion waste as well as fly ash was found. It is important that detailed studies of the REE content in soil were not carried out in Poland. Until now, in a few studies, a high content of cerium and lanthanum was found in relation to the average content of the torn ones in the world. This work focuses on the areas under the influence of the industry associated with the extraction and combustion of hard coal, but also with other types of industry. Analyzes of REE content in soil were conducted in selected areas of the Upper Silesian Industrial Region and Norway, located near the Bjornevatn mine. In study areas, soil samples were collected and used for chemical and magnetometric measurements. Firstly, concentrations of REE were determined, and after that soil samples were used to measure soil magnetic susceptibility. Finally, statistical analyses were performed in order to check the correlation between REE concentrations in soil and soil magnetic susceptibility

    Using Geostatistical Gaussian Simulation for Designing and Interpreting Soil Surface Magnetic Susceptibility Measurements

    No full text
    This paper presents a new approach to the assessment of the uncertainty of using geostatistical Gaussian simulation in soil magnetometry. In the study area, numerous measurements of soil magnetic susceptibility were made, and spatial distributions of soil magnetic susceptibility were simulated. The parameters of variograms of soil magnetic susceptibility measured in the study area were determined and compared with those of simulated soil magnetic susceptibility. Regardless of the measurement scheme used, reproducibility of the original semivariograms of soil magnetic susceptibility was satisfactorily achieved when applying simulated values. A nugget effect, a sill, and a range of correlations of variograms of simulated values of soil magnetic susceptibility were similar to those of measured values. When the input data for the geostatistical simulation were averaged, the measured values of soil magnetic susceptibility and simulated spatial distributions were characterized by slightly lower standard deviations in comparison with the result of simulations based on the non-averaged, measured ones. At the same time, however, local variability of soil magnetic susceptibility was reproduced less. The accuracy of the calculations of point parameters and spatial distributions—based on the averaged values of soil magnetic susceptibility—were satisfactory, but when using geostatistical methods, it is recommended to use non-averaged magnetic susceptibility measurements

    Monitoring of Groundwater Quality With Cokriging of Geochemical and Geoelectrical Measurements

    No full text
    The study presents the possibility of using geostatistical methods for monitoring groundwater quality. Poland is one of the largest copper producers in the world. However, the extraction and production of copper requires constant care for the natural environment. Reservoir Żelazny Most which is situated in South – Western Poland was designed to store flotation tailings out of nearby copper mines. It is one of the biggest industrial dumps in the world. The reservoir stores huge amounts of tailings and industrial water. Water migrating from dump to groundwater could be a potential source of contamination with chlorides, sulphates, heavy metals, and other hazardous substances used in ore separation process in the copper mining industry, like detergent and phenols. Monitoring system around Żelazny Most dump, which was designed to track harmful substances concentrations in groundwater, contains measuring wells and piezometers. They are used to collect groundwater samples for chemical analyses. The idea of the study was to integrate information provided by chemical analyses and geoelectrical measurements by cokriging method, utilizing correlation between electrical resistance of the soil solution and total dissolved solids concentration in groundwater. This enabled to obtain spatial distribution of total dissolved solids concentrations in groundwater at the part of eastern foreground of Żelazny Most dump

    Geostatistical Methods as a Tool Supporting Revitalization of Industrially Degraded and Post-Mining Areas

    No full text
    Post-industrial and post-mining areas have often been under strong anthropogenic pressure for a long time. As a result, such areas, after the ending of industrial activity require taking steps to revitalize them. It may cover many elements of the natural or urban environment, such as water, soil, vegetated areas, urban development etc. To carry out revitalization, it is necessary to determine the initial state of such areas, often using selected chemical, geophysical or ecological. After that it is also important to properly monitor the state of such areas to assess the progress of the revitalization process. For this purpose a variety of change detection technics were developed. Post-industrial areas are very often characterized by a large extent, are difficult to access, have complicated land cover. For this reason, it is particularly important to choose appropriate methods to assess the degree of pollution of such areas. Such methods should be as economical as possible and time-effective. A very desirable feature of such methods is that they should allow a quick assessment of the entire area. Geostatistics supplemented by modern remote sensing can be effective for this purpose. Nowadays, using remote sensing, it is possible to gather information simultaneously from the entire, even vast area, with high spatial, spectral and temporal resolution. Geostatistics in turn provides many tools that are able to enable rapid analysis and inference based on even very complicated often scarce spatial data sets obtained from ground measurement and satellite observations. The goal of the article was to present selected results obtained using geostatistical methods also related to remote sensing, which may be helpful for decision makers in revitalizing post-industrial and post-mining areas. The results described in this paper were based mostly on the previous studies, carried out by authors

    Geostatistical study of spatial correlations of lead and zinc concentration in urban reservoir. Study case Czerniakowskie Lake, Warsaw, Poland

    No full text
    The article presents detailed geostatistical analysis of spatial distribution of lead and zinc concentration in water, suspension and bottom sediments of large, urban lake exposed to intensive anthropogenic pressure within a large city. Systematic chemical measurements were performed at eleven cross-sections located along Czerniakowskie Lake, the largest lake in Warsaw, the capital of Poland. During the summer, the lake is used as a public bathing area, therefore, to better evaluate human impacts, field measurements were carried out in high-use seasons. It was found that the spatial distributions of aqueous lead and zinc differ during the summer and autumn. In summer several Pb and Zn hot-spots were observed, while during autumn spatial distributions of Pb and Zn were rather homogenous throughout the entire lake. Large seasonal differences in spatial distributions of Pb and Zn were found in bottom sediments. Autumn concentrations of both heavy metals were ten times higher in comparison with summer values
    corecore