1,142 research outputs found
Critical point for the CAF-F phase transition at charge neutrality in bilayer graphene
We report on magneto-transport measurements up to 30 T performed on a bilayer
graphene Hall bar, enclosed by two thin hexagonal boron nitride flakes. Our
high mobility sample exhibits an insulating state at neutrality point which
evolves into a metallic phase when a strong in-plane field is applied, as
expected for a transition from a canted antiferromagnetic to a ferromagnetic
spin ordered phase. For the first time we individuate a temperature-independent
crossing in the four-terminal resistance as a function of the total magnetic
field, corresponding to the critical point of the transition. We show that the
critical field scales linearly with the perpendicular component of the field,
as expected from the underlying competition between the Zeeman energy and
interaction-induced anisotropies. A clear scaling of the resistance is also
found and an universal behavior is proposed in the vicinity of the transition
Formation and Acceleration of Uniformly-Filled Ellipsoidal Electron Bunches Obtained via Space-Charge-Driven Expansion from a Cesium-Telluride Photocathode
We report the experimental generation, acceleration and characterization of a
uniformly-filled electron bunch obtained via space-charge-driven expansion
(often referred to as "blow-out regime") in an L-band (1.3-GHz) radiofrequency
photoinjector. The beam is photoemitted from a Cesium-Telluride semiconductor
photocathode using a short ( fs) ultraviolet laser pulse. The produced
electron bunches are characterized with conventional diagnostics and the
signatures of their ellipsoidal character is observed. We especially
demonstrate the production of ellipsoidal bunches with charges up to
nC corresponding to a -fold increase compared to previous experiments
with metallic photocathodes.Comment: 9, pages, 13 figure
Conversion of a transverse density modulation into a longitudinal phase space modulation using an emittance exchange technique
We report on an experiment to produce a train of sub-picosecond microbunches
using a transverse-to-longitudinal emittance exchange technique. The generation
of a modulation on the longitudinal phase space is done by converting an
initial horizontal modulation produced using a multislits mask. The preliminary
experimental data clearly demonstrate the conversion process. To date only the
final energy modulation has been measured. However numerical simulations, in
qualitative agreement with the measurements, indicate that the conversion
process should also introduce a temporal modulation.Comment: 4 pages, 6 figures. Submitted to the proceedings of the Physics and
Applications of High-Brightness Electron Beams (HBEB09), Nov. 16-19, 2009,
Maui H
Spatial Control of Photoemitted Electron Beams using a Micro-Lens-Array Transverse-Shaping Technique
A common issue encountered in photoemission electron sources used in electron
accelerators is the transverse inhomogeneity of the laser distribution
resulting from the laser-amplification process and often use of frequency up
conversion in nonlinear crystals. A inhomogeneous laser distribution on the
photocathode produces charged beams with lower beam quality. In this paper, we
explore the possible use of microlens arrays (fly-eye light condensers) to
dramatically improve the transverse uniformity of the drive laser pulse on UV
photocathodes. We also demonstrate the use of such microlens arrays to generate
transversely-modulated electron beams and present a possible application to
diagnose the properties of a magnetized beam.Comment: arXiv admin note: text overlap with arXiv:1609.0166
Longitudinal phase space manipulation in energy recovering linac-driven free-electron lasers
Energy recovering an electron beam after it has participated in a
free-electron laser (FEL) interaction can be quite challenging because of the
substantial FEL-induced energy spread and the energy anti-damping that occurs
during deceleration. In the Jefferson Lab infrared FEL driver-accelerator, such
an energy recovery scheme was implemented by properly matching the longitudinal
phase space throughout the recirculation transport by employing the so-called
energy compression scheme. In the present paper,after presenting a
single-particle dynamics approach of the method used to energy-recover the
electron beam, we report on experimental validation of the method obtained by
measurements of the so-called "compression efficiency" and "momentum
compaction" lattice transfer maps at different locations in the recirculation
transport line. We also compare these measurements with numerical tracking
simulations.Comment: 31 pages, 13 figures, submitted to Phys. Rev. Special Topics A&
Influence of Source Propagation Direction and Shear Flow Profile in Impedance Eduction of Acoustic Liners
The acoustic impedance of liners is a key parameter for their design, and depends on the flow conditions, i.e., the sound pressure level and the presence of a grazing flow. The surface impedance of a locally reacting liner is defined as a local intrinsic property relating the acoustic pressure to the normal acoustic particle velocity at the liner surface. Impedance eduction techniques are now widely used to retrieve the impedance of liners in aeroacoustic facilities in the presence of a shear grazing flow. While surface impedance is intrinsic by definition, the educed impedance has recently been shown to depend on the direction of the incident waves relative to the mean flow. Different studies have investigated this issue by considering different acoustic propagation models used in the education process in the hope of matching the educed values. The purpose of the present work is to continue the previous investigations by evaluating the influence of the shear flow profile on the educed impedance, while considering a Bayesian inference process in order to evaluate the uncertainty on the educed values. The identified uncertainties were not able to totally account for the observed discrepancies between educed impedances
Photoinjector-generation of a flat electron beam with transverse emittance ratio of 100
The generation of a flat electron beam directly from a photoinjector is an
attractive alternative to the electron damping ring as envisioned for linear
colliders. It also has potential applications to light sources such as the
generation of ultra-short x-ray pulses or Smith-Purcell free electron lasers.
In this Letter, we report on the experimental generation of a flat-beam with a
measured transverse emittance ratio of for a bunch charge of
nC; the smaller measured normalized root-mean-square emittance is
m and is limited by the resolution of our experimental setup.
The experimental data, obtained at the Fermilab/NICADD Photoinjector
Laboratory, are compared with numerical simulations and the expected scaling
laws.Comment: 5 pages, 3 figure
Generation of angular-momentum-dominated electron beams from a photoinjector
Various projects under study require an angular-momentum-dominated electron
beam generated by a photoinjector. Some of the proposals directly use the
angular-momentum-dominated beams (e.g. electron cooling of heavy ions), while
others require the beam to be transformed into a flat beam (e.g. possible
electron injectors for light sources and linear colliders). In this paper, we
report our experimental study of an angular-momentum-dominated beam produced in
a photoinjector, addressing the dependencies of angular momentum on initial
conditions. We also briefly discuss the removal of angular momentum. The
results of the experiment, carried out at the Fermilab/NICADD Photoinjector
Laboratory, are found to be in good agreement with theoretical and numerical
models.Comment: 8 pages, 7 figures, submitted to Phys. Rev. ST Accel. Beam
- …