163 research outputs found

    New Concepts and Tools for Geological Mapping of Mars: Geological Mapping of Mars: A Workshop on New Concepts and Tools; Tuscany, Italy, 12–14 October 2009

    Get PDF
    Geological mapping is a key tool for understanding the evolution of any planetary surface. The availability of ever growing data sets (e.g., multispectral and hyperspectral imaging and subsurface radar sounding) requires increasing effort in analyzing, integrating, and exploiting them for mapping purposes.To discuss these issues, about 80 planetary geoscientists gathered in Italy at a workshop co‐organized by the Italian Space Agency (ASI), the International Research School of Planetary Sciences (IRSPS), and the U.S. Geological Survey (USGS). The workshop focused on both data and concepts and covered a range of scientific and technical topics

    Fluids mobilization in Arabia Terra, Mars: depth of pressurized reservoir from mounds self-similar clustering

    Full text link
    Arabia Terra is a region of Mars where signs of past-water occurrence are recorded in several landforms. Broad and local scale geomorphological, compositional and hydrological analyses point towards pervasive fluid circulation through time. In this work we focus on mound fields located in the interior of three casters larger than 40 km (Firsoff, Kotido and unnamed crater 20 km to the east) and showing strong morphological and textural resemblance to terrestrial mud volcanoes and spring-related features. We infer that these landforms likely testify the presence of a pressurized fluid reservoir at depth and past fluid upwelling. We have performed morphometric analyses to characterize the mound morphologies and consequently retrieve an accurate automated mapping of the mounds within the craters for spatial distribution and fractal clustering analysis. The outcome of the fractal clustering yields information about the possible extent of the percolating fracture network at depth below the craters. We have been able to constrain the depth of the pressurized fluid reservoir between ~2.5 and 3.2 km of depth and hence, we propose that mounds and mounds alignments are most likely associated to the presence of fissure ridges and fluid outflow. Their process of formation is genetically linked to the formation of large intra-crater bulges previously interpreted as large scale spring deposits. The overburden removal caused by the impact crater formation is the inferred triggering mechanism for fluid pressurization and upwelling, that through time led to the formation of the intra-crater bulges and, after compaction and sealing, to the widespread mound fields in their surroundings

    Regional stratigraphy of the south polar layered deposits (Promethei Lingula, Mars): “Discontinuity-bounded” units in images and radargrams

    Get PDF
    The Mars South Polar Layered Deposits (SPLD) are the result of depositional and erosional events, which are marked by different stratigraphic sequences and erosional surfaces. To unambiguously define the stratigraphic units at regional scale, we mapped the SPLD on the basis of observed discontinuities (i.e., unconformities, correlative discontinuities and conformities), as commonly done in terrestrial modern stratigraphy. This methodology is defined as “Discontinuity-Bounded Units” or allostratigraphy, and is complemented by geomorphological mapping. Our study focuses on Promethei Lingula (PL) and uses both high-resolution images (CTX, HiRISE) and radargrams (SHARAD) to combine surface and sub-surface observations and obtain a 3D geological reconstruction of the SPLD. One regional discontinuity (named AUR1) was defined within the studied stratigraphic succession and is exposed in several non-contiguous outcrops around PL as well as observed at depth within the ice sheet. This is the primary contact between two major depositional sequences, showing a different texture at CTX resolution. The lower sequence is characterized mainly by a “ridge and trough” morphology (Ridge and Trough Sequence; RTS) and the upper sequence shows mainly by a “stair-stepped” morphology (Stair-Stepped Sequence; SSS). On the basis of the observations, we defined two regional “discontinuity-bounded” units in PL, respectively coinciding with RTS and SSS sequences. Our stratigraphic reconstruction provides new hints on the major scale events that shaped this region. Oscillations in Martian axial obliquity could have controlled local climate conditions in the past, affecting the PL geological record

    Subsurface properties of Lucus Planum, Mars, as seen by MARSIS

    Get PDF
    Lucus Planum, extending for a radius of approximately 500 km around 181°E, 5°S, is part of the Medusae Fossae Formation (MFF), a set of several discontinuous deposits of fine-grained, friable material straddling across the Martian highland-lowland boundary. Parts of the MFF have been probed through radar sounding by MARSIS and SHARAD, synthetic-aperture, low-frequency radars carried respectively by ESA's Mars Express and NASA's Mars Reconnaissance Orbiter. They transmit low-frequency radar pulses that are capable of penetrating below the surface, and are reflected by any dielectric discontinuity present in the subsurface. The dielectric permittivity of the MFF material, estimated from data of both radars, is consistent with either a substantial component of water ice or a low-density, ice-poor material. There is no evidence for internal layering in SHARAD data, despite the fact that layering at scales of tens of meters has been reported in many parts of the MFF. This lack of detection can be the result of one or more factors, such as high interface roughness, low dielectric contrast between materials, or discontinuity of the layers. After more than 10 years of observations, MARSIS has acquired about 240 orbits across Lucus Planum, making it possible to map the presence and depth of subsurface interfaces to a much greater detail than in previous works. The positions and strengths of subsurface echoes were extracted manually from radargrams and mapped across Lucus Planum, converting echo time delay to apparent depth. The strongest subsurface echoes, resulting from weak internal attenuation, strong subsurface reflectivity, or both, are found within the deposits located NW of Apollinaris Patera, while no subsurface echoes could be detected in the central section of Lucus Planum, in spite of several high-SNR observations. Subsurface reflections are common in the Eastern and Northwestern sectors, in some cases to depths of more than 2000 m assuming a dielectric permittivity of about 3. The lack of subsurface reflections in the central part of Lucus Planum can be the result of several factors, some of which depend on surface properties. A high topographic roughness at scales comparable to the radar wavelength causes scattering of the impinging pulse, resulting in weaker surface and subsurface echoes. However, surface roughness estimated from MOLA data is higher in the Eastern part of Lucus Planum. Another possibility is that roughness at the base of the deposit is higher in its central part, although there is no indication of such kind of trend in the older surrounding terrains. Because subsurface echoes appear to be closely associated with areas of distinct surface morphology, it is possible that Lucus Planum is in fact laterally inhomogeneous and that the central part consists of denser, more radar-attenuating material. This work was supported by the Italian Space Agency (ASI) through contract no. I/032/12/1

    Multiple subglacial water bodies below the south pole of Mars unveiled by new MARSIS data

    Get PDF
    The detection of liquid water by the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) at the base of the south polar layered deposits in Ultimi Scopuli has reinvigorated the debate about the origin and stability of liquid water under present-day Martian conditions. To establish the extent of subglacial water in this region, we acquired new data, achieving extended radar coverage over the study area. Here, we present and discuss the results obtained by a new method of analysis of the complete MARSIS dataset, based on signal processing procedures usually applied to terrestrial polar ice sheets. Our results strengthen the claim of the detection of a liquid water body at Ultimi Scopuli and indicate the presence of other wet areas nearby. We suggest that the waters are hypersaline perchlorate brines, known to form at Martian polar regions and thought to survive for an extended period of time on a geological scale at below-eutectic temperatures

    OpenPlanetary, an "umbrella" non-profit organisation for open planetary science communities

    Get PDF
    OpenPlanetary, or simply "OP", is an international non-profit organisation that promotes open research in the planetary science and exploration communities: sharing ideas and collaborating on planetary research and data analysis problems, new challenges, and opportunities. OpenPlanetary started in 2015 as a way for participants of the ESA’s Planetary GIS Workshop to stay connected and exchange information related to and beyond this workshop. It expanded further by playing a similar role for the second USGS-hosted Planetary Data Workshop (PDW) in 2017. OpenPlanetary has continued to support the biannual PDW and provides a more persistent forum for participants to highlight presented topics and discussions from the workshops. In 2018, we established OpenPlanetary as a non-profit organisation (Association under 1901 French Law,) in order to provide us with a legal framework to sustainably fund our community framework, projects and activities, and to better serve the planetary science community as a whole. OpenPlanetary is governed by a Board of Directors, elected for two years, which (1) define the policy and general orientation, (2) initiate, endorse, lead, or contribute to the projects and activities, and (3) can make use of the funds of the Association for any endorsed project or activity; the Bureau contains a 3-person subset of the Board members (a president, treasurer, and secretary) and serves as the executive body of the Association

    Reply to: Explaining bright radar reflections below the south pole of Mars without liquid water

    Get PDF
    In their Matter Arising Lalich et al.1 simulate MARSIS echoes at the base of the South Polar Layered Deposits (SPLD) assuming three different layering scenarios (Fig. 1 in ref.1): (a) dusty water ice overlaying bedrock; (b) one CO2 ice layer between dusty water ice and bedrock; and, (c) two basal CO2 ice layers interbedded with one layer of dusty water ice. A surficial layer of CO2 ice ranging from 0 m (no layer) to 2 m in thickness is also considered. The first layer in each simulation is a semi-infinite half space assigned the permittivity of free space, and the bedrock is a semi-infinite half space with pure basaltic rock permittivity. These authors argue that constructive interference generated by some layered configurations produce waveforms (Fig. 2 in ref.1) with local maxima corresponding to the bright basal reflections observed by MARSIS at Ultimi Scopuli 2,3. They conclude that this explanation is more plausible than liquid brines being the source of the bright reflections, as posited instead by Orosei et al.2 and Lauro et al.3. In an earlier paper, however, Orosei et al.4 explored the same model and mathematics covering the entire range of possible parameters for two and three basal CO2 ice layers. Through the quantitative analysis of 3.45 x 108 simulation results, these authors demonstrated that local maxima at one of the MARSIS operating frequencies are not matched by local maxima at the other operating frequencies: that is, a layer stack producing constructive interference at one frequency, does not produce the same effect at the other frequencies, which is inconsistent with MARSIS real data. Thus, constructive interference by basal layers is not a viable mechanism to explain the bright basal reflections at Ultimi Scopuli. Because most of the points in Lalich et al.1 are superseded by Orosei et al.’s4 work, we refer interested readers to that earlier paper for a full discussion of the models and results. Here, we focus on three critical aspects: electromagnetic model; dielectric values used in the simulations; and materials and geology

    Hydrothermal Alteration of Ultramafic Rocks in Ladon Basin, Mars—Insights From CaSSIS, HiRISE, CRISM, and CTX

    Get PDF
    The evolution of the Ladon basin has been marked by intense geological activity and the discharge of huge volumes of water from the Martian highlands to the lowlands in the late Noachian and Hesperian. We explore the potential of the ExoMars Trace Gas Orbiter/Color and Stereo Surface Imaging System color image data set for geological interpretation and show that it is particularly effective for geologic mapping in combination with other data sets such as HiRISE, Context, and Compact Reconnaissance Imaging Spectrometer for Mars. The study area displays dark lobate flows of upper Hesperian to early Amazonian age, which were likely extruded from a regional extensional fault network. Spectral analysis suggests that these flows and the underlying rocks are ultramafic. Two distinct altered levels are observed below the lobate flows. The upper, yellow-orange level shows hundreds of structurally controlled narrow ridges reminiscent of ridges of listwanite, a suite of silicified, fracture-controlled silica-carbonate rocks derived from an ultramafic source and from serpentine. In addition to serpentinite, the detected mineral assemblages may include chlorite, carbonates, and talc. Kaolin minerals are detected in the lower, white level, which could have formed by groundwater alteration of plagioclase in the volcanic pile. Volcanism, tectonics, hydrothermal activity, and kaolinization are interpreted to be coeval, with hydrothermal activity and kaolinization controlled by the interactions between the aquifer and the hot, ultramafic lobate flows. Following our interpretations, East Ladon may host the first listwanite ridges described on Mars, involving a hydrothermal system rooted in a Hesperian aquifer and affecting ultramafic rocks from a magmatic source yet to be identified
    • 

    corecore