86 research outputs found

    Fabrication et caractérisation de polymères micro et nano cellulaires à partir de polymères nanostructurés à base PMMA

    Get PDF
    This dissertation focuses on the production and study of nanocellular foams from PMMA based(poly(methyl methacrylate) materials by CO2 gas dissolution foaming.Due to the novelty of this research field several experimental techniques have been improved or adapted in order to provide valuable information from the systems understudy. Nanostructuration of PMMA-based blends induced by the addition of a block copolymer (MAM, poly(methyl methacrylate)-b-poly(butyl acrylate)-b-poly(methyl methacrylate)) and the cellular structure of the foams produced from these blends have been characterized and related; obtaining that the nanostructuration acts as a pattern for the cellular structure, allowing obtaining a wide range of cellular structures and in particular nanocellular foams. It is demonstrated that processing parameters, such as pressure and temperature, allow differentiating between two foaming routes ; and present a significant influence on the foaming process and final characteristics of neat PMMA foams, but not on PMMA/MAM blends. PMMA/MAM blends present a heterogeneous nucleation mechanism controlled by the nanostructuration that avoid the influence of the processing parameters in the cell nucleation. In addition, some PMMA/MAM blends also present a high stability during the cell growth, avoiding the cellular collapse and coalescence. Finally, it has been studied the influence on the foams properties of the transition between the microcellular and the nanocellular ranges; obtaining that there is a clear influence on the thermal conductivity, which decreases in nanocellular foams due to the Knudsen effect,and the glass transition temperature, which increases in nanocellular foams due to the confinement of the polymer chains in the cell walls, but not on the Young’s modulus.Esta tesis se centra en la producción y estudio de de espumas poliméricas nanocelulares producidas a partir de materiales basados en PMMA (poli(metil metacrilato)), mediante la técnica de espumado por disolución de gas usando CO2. Debido a la novedad de este campo de investigación ha sido necesario mejorar o adaptar varias técnicas experimentales para obtener la información necesaria de los sistemas bajo estudio. Se han caracterizado y relacionado la nanoestructuración de mezclas basadas en PMMA, inducida por la adición de un copolímero de bloque (MAM, poli(metil metacrilato)-copoli(butil acrilato)-co-poli(metil metacrilato)), y la estructura celular de las espumas producidas a partir de esas mezclas; obteniéndose que la nanoestructuración actúa como patrón para la estructura celular, permitiendo obtener una amplia variedad de estructuras celulares y en particular de estructuras nanocelulares.Se ha demostrado que los parámetros de procesado, como la presión y temperatura,permiten diferenciar entre dos rutas de espumado y presentan una influencia significativa en las características finales de las espumas de PMMA puro, pero no en las mezclas de PMMA/MAM. Estas mezclas presentan un mecanismo de nucleación heterogénea controlado por la nanoestructuración, que evita que los parámetros de procesado influyanen el proceso de nucleación de las celdas. Además, algunas mezclas de PMMA/MAM también presentan una alta estabilidad durante el crecimiento de las celdas, evitando el colapso de la estructura celular y la coalescencia.Finalmente, se ha estudiado la influencia en las propiedades de las espumas de la transición entre el rango microcelular y el rango nanocelular; obteniéndose que hay una clara influencia sobre la conductividad térmica, que decrece en las espumas nanocelulares debido al efecto Knudsen, y sobre la temperatura de transición vítrea, que se incrementa debido al confinamiento de las cadenas poliméricas en las paredes de las celdas, pero no sobre el módulo de Young.Cette thèse porte sur la production et l’étude de mousses de polymères micro ou nanoporeux à partir de mélanges nanostructurés à base de PMMA (poly(méthyl méthacrylate)) par dissolution et moussage avec CO2. D’autre part, plusieurs techniques expérimentales ont été améliorées ou adaptées afin de fournir de précieuses informations sur les systèmes étudiés. La nanostructuration de mélanges solides denses à base de PMMA est induite par l’addition d’un copolymère à blocs (MAM, poly(méthyl méthacrylate)-co-poly(butylacrylate)-co-poly(méthyl méthacrylate)). Les structures cellulaires des mousses produites à partir de ces mélanges ont été caractérisées et expliquées ; on a démontré que la nanostructuration agit comme un modèle (un gabarit) pour la structure cellulaire, permettant l’obtention d’un large éventail de structures cellulaires et en particulier des mousses nanocellulaires. De plus il est démontré que les paramètres du procédé, tels que la pression et la température, permettent la différenciation entre les deux voies de moussage utilisées ;ceux-ci ont une influence significative sur les caractéristiques finales des mousses de PMMA seul, mais peu sur celles des mélanges PMMA/MAM. Les mousses dans ces mélanges présentent un mécanisme de nucléation hétérogène contrôlée par la nanostructuration, ce qui permet de limiter l’influence des paramètres de traitement thermique dans la nucléation de la cellule. En outre, certains mélanges de PMMA/MAM présentent également une remarquable stabilité de leur morphologie au cours de la croissance cellulaire, ce qui évite l’effondrement cellulaire et la coalescence.Enfin, on a étudié l’influence de la transition entre les structures micro-cellulaires et les structures nano-cellulaires sur les propriétés : une nette diminution de la conductivité thermique en raison de l’effet de Knudsen que nous avons mis en évidence, une augmentation notable de la température de transition vitreuse en raison de l’isolement des chaînes de polymères dans les parois (les murs) de la cellule ; mais n’avons pas noté d’influence importante de cette transition sur le module de Young

    Nanoporous PMMA: A novel system with different acoustic properties

    Get PDF
    The acoustic properties of closed cell nanoporous and microporous poly(methyl methacrylate) (PMMA) foams have been well characterized, showing that nanoporous PMMA exhibit a different absorption coefficient and transmission loss behavior in comparison with microporous PMMA. Experimental differences may be explained by the different wave propagation mechanism in the micro and nanoscale, which is determined by the confinement of both the gas (Knudsen regime) and the solid phases. These results place nanoporous materials as a new class of polymeric porous material with potential properties in the field of acoustics, especially in multifunctional systems requiring a certain degree of soundproofing

    Advanced nanocellular foams: Perspectives on the current knowledge and challenges

    Get PDF
    Producción CientíficaNanocellular polymers (i.e., cellular polymers with cells and walls in the nanometric range) were first produced in the early 2000s, with the works of Yokoyama et al. being the main precedents in this field, producing nanocellular structures by using supercritical carbon dioxide. However, it was not until a decade later that this research field started to grow significantly, attracting several international research groups in the quest to obtain cellular polymers with cells in the nanocellular range. From 2010 to 2014, the basis of bulk nanocellular foam production was established, and the CO2 gas dissolution foaming technique rapidly proved to be the most suitable production route for such materials (details and theoretical basis of this technique can be found elsewhere). Continuous technical advances (e.g., higher saturation pressures, lower saturation temperatures, faster pressure drop rates) and diverse nucleating agents, from inorganic nanoparticles to block copolymers, provided a broad collection of cellular polymers with submicrometric and nanometric cells. Although quite diverse polymers allowed the achievement of submicrometric cells, amorphous polymers such as polyetherimide (PEI), polystyrene (PS), and, notably, poly (methyl methacrylate) (PMMA) provided the best nanocellular structures, with cell sizes even below 100 nm and significant density reductions.Ministerio de Asuntos Económicos y Transformación Digital y FEDER (grants RTI2018-098749-BI00, RTI2018-097367-A-I00, and PRE2019-088820)Junta de Castilla y León (grants VA275P18 and CLU-2019-04

    Modeling the heat transfer by conduction of nanocellular polymers with bimodal cellular structures

    Get PDF
    Nanocellular polymers are a new generation of materials with the potential of being used as very efficient thermal insulators. It has been proved experimentally that these materials present the Knudsen effect, which strongly reduces the conductivity of the gas phase. There are theoretical equations to predict the thermal conductivity due to this Knudsen effect, but all the models consider an average cell size. In this work, we propose a model to predict the thermal conductivity due to the conduction mechanisms of nanocellular materials with bimodal cellular structures, that is, with two populations of cells, micro and nanocellular. The novelty of our work is to consider not only the average cell size, but the cell size distribution. The predictions of the model are compared with the experimental conductivity of two real bimodal systems based on poly(methyl methacrylate) (PMMA), and it is proved that this new model provides more accurate estimations of the conductivity than the models that do not consider the bimodality. Furthermore, this model could be applied to monomodal nanocellular polymers. In particular, for monomodal materials presenting a wide cell size distribution and at low densities, the model predicts important variations in comparison with the current models in the literature. This result indicates that the cell size distribution must be included in the estimations of the thermal conductivity of nanocellular polymer

    Nanoporous polymeric materials: A new class of materials with enhanced properties

    Get PDF
    Producción CientíficaNanoporous polymeric materials are porous materials with pore sizes in the nanometer range (i.e., below 200 nm), processed as bulk or film materials, and from a wide set of polymers. Over the last several years, research and development on these novel materials have progressed significantly, because it is believed that the reduction of the pore size to the nanometer range could strongly influence some of the properties of porous polymers, providing unexpected and improved properties compared to conventional porous and microporous polymers and non-porous solids. In this review, the key properties of these nanoporous polymeric materials (mechanical, thermal, dielectric, optical, filtration, sensing, etc.) are analyzed. The experimental and theoretical results obtained up to date related to the structure–property relations are presented. In several sections, in order to present a more compressive approach, the trends obtained for nanoporous polymers are compared to those for metallic and ceramic nanoporous systems. Moreover, some specific characteristics of these materials, such as the consequences of the confinement of both gas and solid phases, are described. Likewise, the main production methods are briefly described. Finally, some of the potential applications of these materials are also discussed in this paper.Financial support from FPI Grant BES-2013-062852 (B. Notario) from the Spanish Ministry of Education is gratefully acknowledged. Financial assistance from the MINECO and FEDER Program (MAT 2012-34901) and the Junta of Castile and Leon (VA035U13) is gratefully acknowledge

    Low-density PMMA/MAM nanocellular polymers using low MAM contents: Production and characterization

    Get PDF
    Low-density nanocellular polymers are required to take advantage of the full potential of these materials as high efficient thermal insulators. However, their production is still a challenging task. One promising approach is the use of nanostructured polymer blends of poly(methyl methacrylate) (PMMA) and a block copolymer poly(methyl methacrylate)-poly(butyl acrylate)-poly(methyl methacrylate) (MAM), which are useful for promoting nucleation but seem to present a severe drawback, as apparently avoid low relative densities. In this work, new strategies to overcome this limitation and produce low-density nanocellular materials based on these blends are investigated. First, the effect of very low amounts of the MAM copolymer is analysed. It is detected that nanostructuration can be prevented using low copolymer contents, but nucleation is still enhanced as a result of the copolymer molecules with high CO2 affinity dispersed in the matrix, so nanocellular polymers are obtained using very low percentages of the copolymer. Second, the influence of the foaming temperature is studied. Results show that for systems in which there is not a clear nanostructuration, cells can grow more freely and smaller relative densities can be achieved. For these studies, blends of PMMA with MAM with copolymer contents from 10 wt% and as low as 0.1 wt% are used. For the first time, the production strategies proposed in this work have allowed obtaining low density (relative density 0.23) nanocellular polymers based on PMMA/MAM blends. Graphical abstrac

    Understanding the role of MAM molecular weight in the production of PMMA/MAM nanocellular polymers

    Get PDF
    Nanostructured polymer blends with CO2-philic domains can be used to produce nanocellular materials with controlled nucleation. It is well known that this nanostructuration can be induced by the addition of a block copolymer poly(methyl methacrylate)-poly(butyl acrylate)-poly(methyl methacrylate) (MAM) to a poly(methyl methacrylate) (PMMA) matrix. However, the effect of the block copolymer molecular weight on the production of nanocellular materials is still unknown. In this work, this effect is analysed by using three types of MAM triblock copolymers with different molecular weights, and a fixed blend ratio of 90 wt% PMMA and 10 wt% of MAM. Blends were produced by extrusion. As a result of the extrusion process, a non-equilibrium nanostructuration takes place in the blends, and the micelle density increases as MAM molecular weight increases. Micelle formation is proposed to occur as result of two mechanisms: dispersion, controlled by the extrusion parameters and the relative viscosities of the polymers, and self-assembly of MAM molecules in the dispersed domains. On the other hand, in the nanocellular materials produced with these blends, cell size decreases from 200 to 120 nm as MAM molecular weight increases. Cell growth is suggested to be controlled by the intermicelle distance and limited by the cell wall thickness. Furthermore, a theoretical explanation of the mechanisms underlying the limited expansion of PMMA/MAM systems is proposed and discussed

    Dielectric behavior of porous PMMA: From the micrometer to the nanometer scale

    Get PDF
    Producción CientíficaIn recent years, there has been a significant interest of the scientific community on nanocellular polymeric foams as a possible next generation of materials with a low dielectric constant for microelectronics applications In this work, the dielectric behavior of microcellular and nanocellular poly (methyl methacrylate) (PMMA) based foams has been characterized, both as a function of frequency and temperature, in order to analyze the effect of reducing the cell size to the nanoscale on the dielectric properties. Experimental results have shown clear differences in the dielectric behavior of the samples with cell sizes in the nanoscale as well as a sharp reduction of the dielectric constant when the porosity increases.Financial support from FPI grant BES-2013-062852 (B. Notario) from MINECO and FEDER program (MAT 2012-34901) MINECO, FEDER, UE (MAT2015-69234-R) and the Junta de Castile and Leon (VA035U13) are gratefully acknowledged

    Production of cellular polymers without solid outer skins by gas dissolution foaming: A long-sought step towards new applications

    Get PDF
    Producción CientíficaAn innovative approach to reduce and eliminate the non-foamed solid skins of the cellular polymers fabricated by gas dissolution foaming is presented in this work. The incorporation of a flexible gas diffusion barrier on the polymer surfaces during the saturation and foaming processes provided significant reduction or even hindered the appearance of the non-foamed solid skins while enabling appropriate expansions in several polymers (PMMA, PS, PC, and PCL). Besides, this approach has allowed to achieve significant expansions by foaming polymer samples with thicknesses in the order of magnitude of the non-foamed solid skins, i.e., thin films (<100 µm). This paper discusses how the gas diffusion barrier allows reducing the solid skins, the mechanisms involved in the gas diffusion process, and the possibility of interconnecting the inner cellular structure with the external medium.Junta de Castilla y León - Fondo Europeo de Desarrollo Regional (project CLU-2019-04)Ministerio de Ciencia, Innovación y Universidades (project PRE2019-088820)Ministerio de Ciencia, Innovación y Universidades - Fondo Europeo de Desarrollo Regional (projects RTI2018-098749-B-I00 and RTI2018-097367-A-I00)Ente Regional de la Energía de Castilla y León (project EREN_2019_L4_UVA

    Melamine Foams Decorated with In-Situ Synthesized Gold and Palladium Nanoparticles

    Get PDF
    Producción CientíficaA versatile and straightforward route to produce polymer foams with functional surface through their decoration with gold and palladium nanoparticles is proposed. Melamine foams, used as polymeric porous substrates, are first covered with a uniform coating of polydimethylsiloxane, thin enough to assure the preservation of their original porous structure. The polydimethylsiloxane layer allows the facile in-situ formation of metallic Au and Pd nanoparticles with sizes of tens of nanometers directly on the surface of the struts of the foam by the direct immersion of the foams into gold or palladium precursor solutions. The effect of the gold and palladium precursor concentration, as well as the reaction time with the foams, to the amount and sizes of the nanoparticles synthesized on the foams, was studied and the ideal conditions for an optimized functionalization were defined. Gold and palladium contents of about 1 wt.% were achieved, while the nanoparticles were proven to be stably adhered to the foam, avoiding potential risks related to their accidental release
    corecore